Skip to main content
Glama
Ash-Blanc

KIA - Kaizen Intelligent Agent

by Ash-Blanc

KIA - Kaizen Intelligent Agent πŸš€

Ultra-efficient 4-tool MCP server for production-grade pair programming

Smart orchestration of best-in-class APIs: Morph + Chroma + GEPA (DSPy)
Zero reinvention Β· Maximum leverage Β· 95%+ code quality in seconds

Version License FastMCP

GitHub Repository


🎯 What is KIA?

KIA transforms Claude into a production-grade pair programmer by intelligently orchestrating the best code APIs available todayβ€”instead of reimplementing them.

The Problem: Most MCP servers reimplement basic primitives (search, merge, etc.) with poor performance.

KIA's Solution: Orchestrate world-class APIs with workflow-centric tools.

Problem

KIA Solution

Powered By

Performance

70% Code Quality

Iterative evolution to 95%+

GEPA (DSPy) + Morph fast-apply

~6-12s

Local Code Search

Natural language search

Morph semantic search

~1000ms

Package Discovery

Search 3,000+ packages

Chroma Package Search

~1200ms

No Learning

Pattern extraction & reuse

KIA pattern library

instant


πŸ› οΈ Core Tools (4 Workflow-Centric)

1. evolve_code - Production-Ready Code Evolution

Solves the 70% problem through intelligent, iterative improvement.

How it works:

  1. GEPA (DSPy) generates multi-step reasoning trace + improvement plan

  2. Morph fast-apply (10,500 tok/sec) applies each edit instantly

  3. Quality validation across 5 dimensions (correctness, performance, security, readability, maintainability)

  4. Iterates until 95%+ quality reached

  5. Auto-learns successful patterns for future use

Example:

# Input: 70% quality def authenticate(username, password): user = db.query(f"SELECT * FROM users WHERE username='{username}'") if user and user.password == password: return True return False # After evolve_code: 97% quality # - SQL injection fixed with parameterized queries # - Secure password hashing (SHA-256) # - Constant-time comparison (timing attack protection) # - Type hints and validation # - Comprehensive docstrings # Total time: ~8 seconds

Powered by:


2. search_local_codebase - Natural Language Code Search

Search your project with plain English using Morph's two-stage semantic search.

Example:

User: "Search my codebase for JWT authentication logic" KIA: [Morph two-stage retrieval: vector + GPU reranking] [Returns ranked results with relevance scores in ~1000ms]

Features:

  • Natural language queries

  • Two-stage retrieval (vector + rerank)

  • Results in ~1000ms

  • File paths + line numbers + relevance scores

Requirements:

  • Code in a git repository

  • Repository pushed to Morph (one-time setup)


3. search_packages - Discover Best Practices

Search 3,000+ public packages to learn from real implementations.

Example:

User: "Find rate limiting implementations from popular Python packages" KIA: [Chroma searches: flask, fastapi, django, etc.] [Returns code examples + documentation links]

Supported:

  • Python (PyPI)

  • JavaScript/TypeScript (npm)

  • Go (Go modules)

  • Ruby (RubyGems)

  • Java (Maven)

  • And more...

Powered by:


4. learn_pattern - Collective Intelligence

Extract successful patterns from code evolutions and reuse them.

Example:

# Pattern extracted from evolution: # Name: "Type Safety + Validation" # Confidence: 0.95 # Tags: ["type_hints", "validation", "security"] # Before def process(x): return x * 2 # After def process(x: int) -> int: if not isinstance(x, int): raise TypeError("Expected int") return x * 2 # KIA learns this pattern and applies it to future evolutions automatically

πŸ“ Prompts (9 Reusable Templates)

Prompts provide structured guidance for common workflows. Use these first to get the most out of KIA!

Prompt

Parameters

Best For

quick_start

None

First-time users, status check

kia_usage_guide

None

Complete documentation reference

evolve_code_workflow

code, goal, focus_areas

Step-by-step evolution guidance

security_audit_prompt

code, language

Security-focused code review

refactor_legacy_code

code, original_language, modernize_to

Modernizing old codebases

performance_optimization

code, bottleneck_description

Speed and efficiency improvements

add_type_safety

code

Adding type hints and validation

debug_assistance

code, error_message, expected_behavior, actual_behavior

Troubleshooting bugs

compare_implementations

topic, packages

Learning from multiple libraries

Example: Using Prompts

User: "Use the security_audit_prompt for this code: def login(user, pwd): cur.execute(f"SELECT * FROM users WHERE name='{user}'") return cur.fetchone()[1] == pwd " KIA: [Returns structured security audit workflow] - Checklist of vulnerabilities to check - Recommended tool usage sequence - Common security fixes to apply - Step-by-step remediation guide

πŸ“š Resources (10 Data Endpoints)

Resources provide read-only access to server state, configuration, and documentation.

Resource URI

Description

kia://stats/overview

Server statistics and performance metrics

kia://patterns/library

All learned patterns in the library

kia://patterns/{pattern_id}

Specific pattern details (template)

kia://evolution/history

Recent code evolution history

kia://api/status

API configuration and health status

kia://tools/catalog

Complete tool documentation with examples

kia://prompts/catalog

All available prompts with descriptions

kia://quality/{language}

Language-specific quality guidelines (template)

kia://tips/evolution

Evolution best practices

kia://tips/search

Search optimization tips

Example: Reading Resources

User: "What's my KIA server status?" [Read resource: kia://api/status] { "apis": { "morph": {"configured": true, "performance": "10,500 tok/sec"}, "chroma": {"configured": true, "packages_indexed": "3,000+"}, "gepa_openrouter": {"configured": true, "model": "llama-3.1-70b"} }, "overall_readiness": {"full_capability": true} }
User: "Show me Python quality guidelines" [Read resource: kia://quality/python] { "type_hints": "Use typing module: List, Dict, Optional, Union", "docstrings": "Google or NumPy style with Args, Returns, Raises", "security": "parameterized queries, secrets module, input validation", "tools": ["mypy", "ruff", "black", "pytest"] }

πŸš€ Quick Setup

Prerequisites

  • Python 3.9+

  • Git

1. Clone Repository

git clone https://github.com/Ash-Blanc/kia-mcp-server.git cd kia-mcp-server

2. Install Dependencies

pip install -r requirements.txt

Or with uv (recommended):

pip install uv uv pip install -r requirements.txt

3. Get API Keys

Morph API (code merging + semantic search):

Chroma Package Search (package discovery):

OpenRouter (GEPA/DSPy LLM backend):

  • Sign up: openrouter.ai

  • Export key: export OPENROUTER_API_KEY="sk-or-..."

4. Test Locally

python server.py # β†’ "πŸš€ KIA MCP Server starting..." # β†’ " Morph API: βœ… Available" # β†’ " Chroma API: βœ… Available" # β†’ " GEPA (OpenRouter): βœ… Available"

πŸ”§ IDE Integration

Claude Desktop (macOS/Windows)

Add to ~/Library/Application Support/Claude/claude_desktop_config.json (macOS) or %APPDATA%\Claude\claude_desktop_config.json (Windows):

{ "mcpServers": { "kia": { "command": "python", "args": ["/absolute/path/to/kia-mcp-server/server.py"], "env": { "MORPH_API_KEY": "sk-...", "CHROMA_API_KEY": "ck-...", "OPENROUTER_API_KEY": "sk-or-..." } } } }

Restart Claude Desktop β†’ KIA appears in your tool list βœ…

Cursor / VS Code / Zed

Use FastMCP CLI for easy installation:

pip install fastmcp fastmcp install cursor # or vscode, zed

Or manually add to MCP settings with the same config format above.


πŸ“– Usage Examples

  1. Start with - Check server status and see examples

  2. Use task-specific prompts - Get structured guidance for your task

  3. Call tools with guidance - Execute with context from prompts

  4. Check resources - Monitor stats, review patterns

Example 1: Evolve Legacy Code

User: "Use evolve_code on this function: def login(user, pwd): cur.execute(f"SELECT * FROM users WHERE name='{user}'") row = cur.fetchone() return row and row[1] == pwd Make it secure, typed, tested, production-ready." KIA: [GEPA generates multi-step plan] β†’ Step 1: Fix SQL injection β†’ Step 2: Add password hashing β†’ Step 3: Add type hints β†’ Step 4: Add validation β†’ Step 5: Add tests [Morph applies each step at 10,500 tok/sec] [Quality: 70% β†’ 97%] [Time: ~8 seconds] Result: Production-ready code with: βœ… Parameterized SQL queries βœ… Secure password hashing βœ… Constant-time comparison βœ… Full type annotations βœ… Input validation βœ… Comprehensive docstrings βœ… Unit tests

Example 2: Search Local Codebase

User: "Search my codebase for error handling patterns" KIA: [Morph semantic search: ~1000ms] Results: 1. src/api/error_handler.py:45-67 (relevance: 0.94) - Custom exception hierarchy 2. src/utils/validators.py:23-38 (relevance: 0.87) - Input validation with custom errors 3. src/middleware/error_middleware.py:12-45 (relevance: 0.82) - Global error handler with logging

Example 3: Search Packages

User: "Find JWT authentication implementations from popular Python packages" KIA: [Chroma searches PyPI packages] Found in: 1. flask-jwt-extended (v4.5.2) - JWT token generation/validation - Refresh token support - File: jwt_manager.py:89-145 2. django-rest-framework-simplejwt (v5.2.2) - JWT authentication backend - Token blacklisting - File: authentication.py:23-78 3. fastapi-jwt-auth (v0.9.0) - Dependency injection pattern - Async JWT validation - File: auth_jwt.py:112-167

Example 4: Learn Pattern

User: "This evolution was successful - learn from it: Before: def fetch_data(url): return requests.get(url).json() After: def fetch_data(url: str, timeout: int = 30) -> dict: try: response = requests.get(url, timeout=timeout) response.raise_for_status() return response.json() except requests.RequestException as e: logger.error(f"Failed to fetch {url}: {e}") raise Improvement: Added error handling, timeouts, logging" KIA: [Extracts pattern: "Robust HTTP Requests"] [Stores in pattern library] [Tags: error_handling, timeouts, logging, http] [Confidence: 0.92] βœ… Pattern learned! Will apply to similar code in future evolutions.

Example 5: Use Prompts for Structured Workflows

User: "I need to optimize this slow function" [Get prompt: performance_optimization with code and bottleneck_description] KIA Returns: # Performance Optimization Workflow ## Code to Optimize: [your code] ## Performance Analysis Checklist: - Algorithm Complexity: O(nΒ²) β†’ O(n log n)? - Caching opportunities - Async I/O potential - Batch operations ## Recommended Tool Usage: 1. search_packages(query="caching memoization", packages=["cachetools"]) 2. evolve_code(code=..., quality_threshold=0.95) 3. search_local_codebase(query="similar performance patterns") ## Quick Wins: - Replace list.append() with comprehensions - Use set() for membership testing - Add @lru_cache to pure functions

πŸ—οΈ Architecture Philosophy

Why External APIs?

Anti-pattern: Reimplementing semantic search, code merging, etc.

KIA's approach: Orchestrate best-in-class APIs.

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ KIA MCP SERVER (Orchestrator) β”‚ β”‚ β”‚ β”‚ 4 workflow-centric tools: β”‚ β”‚ β€’ evolve_code β”‚ β”‚ β€’ search_local_codebase β”‚ β”‚ β€’ search_packages β”‚ β”‚ β€’ learn_pattern β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ↓ ↓ ↓ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ GEPA β”‚ β”‚ Morph β”‚ β”‚ Chroma β”‚ β”‚ (DSPy) β”‚ β”‚ 10,500 β”‚ β”‚ 3,000+ β”‚ β”‚Evolution β”‚ β”‚ tok/sec β”‚ β”‚Packages β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Benefits:

  1. Performance: Morph's 10,500 tok/sec vs. our ~100 tok/sec

  2. Quality: GEPA's multi-step reasoning vs. simple prompts

  3. Scale: Chroma's 3,000+ packages vs. our handful

  4. Maintenance: They handle updates, improvements, scaling

  5. Cost: Shared infrastructure vs. running our own

What KIA Adds:

  • βœ… Smart orchestration (evolution workflow)

  • βœ… Pattern learning (collective intelligence)

  • βœ… Developer experience (workflow-centric tools)

  • βœ… MCP protocol integration


πŸ“Š Stats & Monitoring

Check KIA's performance via resources:

Read

{ "total_evolutions": 42, "successful_evolutions": 39, "success_rate": 0.93, "patterns_learned": 15, "gepa_evolutions": 38, "morph_merges": 127, "chroma_searches": 8, "morph_searches": 12 }

Read

{ "evolution_history": { "total_evolutions": 42, "recent_evolutions": [...], "summary": { "average_iterations": 7.3, "average_improvement": 0.24, "gepa_usage_rate": 0.91 } } }

πŸ§ͺ Testing

Run the test suite:

python test_usability.py

Tests validate:

  • βœ… All 4 core tools functional

  • βœ… API integrations working

  • βœ… Quality metrics calculation

  • βœ… Pattern learning system


πŸ”§ Troubleshooting

"Morph API not configured"

# Check if key is set echo $MORPH_API_KEY # If empty, set it export MORPH_API_KEY="your-key-here" # Restart KIA python server.py

"Chroma Package Search requires API key"

export CHROMA_API_KEY="your-key-here" python server.py

"GEPA not available"

export OPENROUTER_API_KEY="your-key-here" python server.py

Evolution not improving quality

Possible causes:

  1. Code is already high quality

  2. No clear improvement path

  3. API rate limits

Solutions:

  • Check API quotas

  • Review quality metrics

  • Try with different code


πŸ—ΊοΈ Roadmap

Current (v0.3.0) βœ…

  • βœ… GEPA (DSPy) integration for code evolution

  • βœ… Morph fast-apply + semantic search

  • βœ… Chroma Package Search integration

  • βœ… Pattern learning system

  • βœ… FastMCP 2.13+ framework

Next (v0.4.0)

  • Persistent pattern storage (disk-based)

  • Pattern embeddings + semantic matching

  • Multi-file evolution support

  • Real-time quality visualization

  • Self-evolution workflow (server evolves itself)

Future (v1.0.0)

  • Team collaboration features

  • Custom pattern libraries

  • Analytics dashboard

  • CI/CD integration

  • VS Code extension


🀝 Contributing

We welcome contributions! Priority areas:

  • GEPA/DSPy improvements - Better reasoning chains

  • Pattern matching - Semantic pattern search

  • Documentation - More examples and guides

  • Test coverage - Expand test suite

  • API integrations - New code/search APIs

Development Setup

git clone https://github.com/Ash-Blanc/kia-mcp-server.git cd kia-mcp-server pip install -r requirements.txt python test_usability.py

πŸ“š References

Powered by:

Inspired by:

  • Addy Osmani's "70% Problem"

  • Zed's Agentic Engineering

  • Developer pain points from HN/Reddit research


πŸ“„ License

MIT License - See LICENSE file


🏒 Credits

KIA by Kaizen Labs

"Continuous improvement is better than delayed perfection." πŸš€


πŸ“ž Support


Built with ❀️ by developers, for developers

-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Ash-Blanc/kia-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server