Skip to main content
Glama
Dockerfile1.42 kB
# Use NVIDIA CUDA base image for GPU support with development tools FROM nvidia/cuda:12.4.1-devel-ubuntu22.04 # Set environment variables ENV PYTHONUNBUFFERED=1 ENV PYTHONDONTWRITEBYTECODE=1 ENV PIP_NO_CACHE_DIR=1 ENV PIP_DISABLE_PIP_VERSION_CHECK=1 # Install system dependencies including Python and PDF processing tools RUN apt-get update && apt-get install -y --no-install-recommends \ python3 \ python3-pip \ curl \ ca-certificates \ poppler-utils \ libpoppler-dev \ && apt-get clean \ && rm -rf /var/lib/apt/lists/* # Set Python 3 as default RUN update-alternatives --install /usr/bin/python python /usr/bin/python3 1 # Install uv for faster package management RUN python -m pip install --upgrade pip && pip install uv # Create app directory WORKDIR /app # Copy project files COPY pyproject.toml ./ COPY nanonets_mcp/ ./nanonets_mcp/ COPY README.md ./ # Install Python dependencies RUN uv pip install --system -e . # Create non-root user for security RUN useradd --create-home --shell /bin/bash app RUN chown -R app:app /app USER app # Create directory for model cache RUN mkdir -p /app/.cache/huggingface # Expose port for MCP server EXPOSE 8000 # Health check HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3 \ CMD python -c "from nanonets_mcp.server import mcp; print('OK')" || exit 1 # Default command CMD ["python", "-m", "nanonets_mcp.server"]

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ArneJanning/nanonets-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server