Skip to main content
Glama

ACE MCP Server

LLM_PROVIDERS.mdโ€ข8.24 kB
# LLM Providers Guide for ACE MCP Server This guide helps you choose and configure the optimal LLM provider for your ACE (Agentic Context Engineering) implementation. ## ๐ŸŽฏ Quick Recommendation **For Production ACE Framework: Use DeepSeek V3.2-Exp** DeepSeek-V3.2-Exp has shown the best results for ACE framework tasks, offering: - Excellent reasoning capabilities for reflection and curation - 128K context window (ideal for long playbooks) - Cost-effective pricing ($0.28/1M input, $0.42/1M output tokens) - Both standard and "thinking mode" (reasoner) variants ## ๐Ÿ“Š Provider Comparison Matrix | Provider | Best For | Context | Cost/Quality | API Access | Embeddings | |----------|----------|---------|--------------|------------|------------| | **DeepSeek V3.2** | **ACE Production** | 128K | โญโญโญโญโญ | Easy | โœ… | | OpenAI GPT-4o | Universal | 128K | โญโญโญโญ | Easy | โœ… | | Claude 3 Opus | Long Context | 200K | โญโญโญ | Medium | โŒ | | Gemini 1.5 Pro | Huge Context | 1M | โญโญโญโญ | Medium | โœ… | | Mistral Large | Open Source | 32K-65K | โญโญโญ | Easy | โœ… | | LM Studio | Local/Private | Varies | โญโญ | Local | Varies | ## ๐Ÿš€ Provider Details ### 1. DeepSeek V3.2-Exp (RECOMMENDED) **Why Best for ACE:** - Optimized for reasoning and chain-of-thought analysis - Excellent performance in Generator, Reflector, and Curator phases - Two modes: `deepseek-chat` (standard) and `deepseek-reasoner` (thinking mode) **Configuration:** ```env LLM_PROVIDER=deepseek DEEPSEEK_API_KEY=sk-your-deepseek-api-key-here DEEPSEEK_MODEL=deepseek-chat # For complex reasoning tasks, use: deepseek-reasoner ``` **Pricing:** - Input: $0.28 per 1M tokens (cache miss), $0.028 (cache hit) - Output: $0.42 per 1M tokens - Context: 128K tokens - Max Output: 4K (chat), 32K (reasoner) **Get API Key:** [https://platform.deepseek.com/](https://platform.deepseek.com/) ### 2. OpenAI GPT-4o **Strengths:** - Excellent balance of cost, speed, and quality - Best ecosystem support and documentation - Reliable for all ACE framework phases **Configuration:** ```env LLM_PROVIDER=openai OPENAI_API_KEY=sk-your-api-key-here OPENAI_MODEL=gpt-4o OPENAI_EMBEDDING_MODEL=text-embedding-3-small ``` **Use Cases:** - When you need proven reliability - Existing OpenAI infrastructure - Need both chat and embeddings from same provider **Get API Key:** [https://platform.openai.com/](https://platform.openai.com/) ### 3. Anthropic Claude 3 **Strengths:** - Largest context window (200K tokens) - Excellent for complex reasoning tasks - Strong safety and alignment **Configuration:** ```env LLM_PROVIDER=anthropic ANTHROPIC_API_KEY=sk-ant-your-api-key-here ANTHROPIC_MODEL=claude-3-sonnet-20240229 # Options: claude-3-opus-20240229 (best), claude-3-haiku-20240307 (fast) ``` **Limitations:** - No embeddings API (use OpenAI for embeddings) - More expensive than alternatives - Requires separate embedding provider **Get API Key:** [https://console.anthropic.com/](https://console.anthropic.com/) ### 4. Google Gemini 1.5 Pro **Strengths:** - Massive 1M token context window - Good reasoning capabilities - Competitive pricing **Configuration:** ```env LLM_PROVIDER=gemini GEMINI_API_KEY=your-google-api-key-here GEMINI_MODEL=gemini-1.5-pro # Alternative: gemini-1.5-flash (faster, cheaper) ``` **Use Cases:** - Extremely large playbooks (>100K tokens) - Document-heavy ACE implementations - Cost-sensitive deployments **Get API Key:** [https://ai.google.dev/](https://ai.google.dev/) ### 5. Mistral Large **Strengths:** - Open-source friendly - Good performance for the price - Can be self-hosted **Configuration:** ```env LLM_PROVIDER=mistral MISTRAL_API_KEY=your-mistral-api-key-here MISTRAL_MODEL=mistral-large-latest # Alternatives: mixtral-8x7b-instruct, mixtral-8x22b-instruct ``` **Use Cases:** - Open-source requirements - European data residency - Self-hosted deployments **Get API Key:** [https://mistral.ai/](https://mistral.ai/) ### 6. LM Studio (Local) **Strengths:** - Complete privacy and control - No API costs after setup - Works offline **Configuration:** ```env LLM_PROVIDER=lmstudio LMSTUDIO_BASE_URL=http://localhost:1234/v1 LMSTUDIO_MODEL=your-local-model ``` **Use Cases:** - Sensitive data requirements - No internet connectivity - Development and testing **Setup:** [https://lmstudio.ai/](https://lmstudio.ai/) ## ๐ŸŽฏ ACE Framework Optimization ### For Different ACE Phases: **Generator Phase:** - **Best:** DeepSeek-chat, GPT-4o - **Alternative:** Claude-3-sonnet, Gemini-1.5-pro **Reflector Phase (Critical):** - **Best:** DeepSeek-reasoner (thinking mode) - **Alternative:** Claude-3-opus, GPT-4o **Curator Phase:** - **Best:** DeepSeek-chat, Claude-3-sonnet - **Alternative:** GPT-4o, Mistral-large ### Context Size Recommendations: | Playbook Size | Recommended Provider | Reason | |---------------|---------------------|---------| | < 50K tokens | Any provider | All handle this well | | 50K-100K tokens | DeepSeek, GPT-4o, Claude-3 | Good context handling | | 100K-200K tokens | Claude-3, Gemini-1.5 | Large context specialists | | > 200K tokens | Gemini-1.5 Pro | Only option with 1M context | ## ๐Ÿ”ง Configuration Examples ### Multi-Provider Setup (Recommended) Use different providers for different phases: ```env # Primary provider for most tasks LLM_PROVIDER=deepseek DEEPSEEK_API_KEY=sk-xxx # Fallback for embeddings (if primary doesn't support) OPENAI_API_KEY=sk-xxx OPENAI_EMBEDDING_MODEL=text-embedding-3-small ``` ### Docker Compose Override ```yaml # docker-compose.override.yml services: ace-server: environment: - LLM_PROVIDER=deepseek - DEEPSEEK_API_KEY=${DEEPSEEK_API_KEY} - DEEPSEEK_MODEL=deepseek-reasoner # Use thinking mode ``` ### Cursor AI Configuration ```json { "mcpServers": { "ace-context-engine": { "command": "node", "args": ["/path/to/ace-mcp-server/dist/index.js"], "env": { "LLM_PROVIDER": "deepseek", "DEEPSEEK_API_KEY": "sk-your-key-here", "DEEPSEEK_MODEL": "deepseek-chat", "ACE_CONTEXT_DIR": "./contexts", "ACE_LOG_LEVEL": "info" } } } } ``` ## ๐Ÿ’ก Best Practices ### 1. Provider Selection Strategy ``` Production: DeepSeek V3.2-Exp (best results) Fallback: OpenAI GPT-4o (reliability) Embeddings: OpenAI text-embedding-3-small (if needed) Development: LM Studio (cost-effective testing) ``` ### 2. Cost Optimization - Use DeepSeek for most tasks (lowest cost/token) - Cache frequently used contexts - Use smaller models for simple curation tasks - Monitor token usage with structured logging ### 3. Performance Tuning ```env # For faster responses DEEPSEEK_MODEL=deepseek-chat DEEPSEEK_TIMEOUT=30000 # For better reasoning (slower) DEEPSEEK_MODEL=deepseek-reasoner DEEPSEEK_TIMEOUT=120000 ``` ### 4. Error Handling All providers include automatic retry logic and graceful degradation: ```typescript // Automatic in ACE MCP Server const provider = createLLMProvider({ provider: 'deepseek', deepseek: { apiKey: process.env.DEEPSEEK_API_KEY!, maxRetries: 3, timeout: 60000 } }); ``` ## ๐Ÿ” Troubleshooting ### Common Issues: **API Key Invalid:** ```bash # Check your API key format echo $DEEPSEEK_API_KEY | head -c 10 # Should start with 'sk-' ``` **Timeout Errors:** ```env # Increase timeout for complex reasoning DEEPSEEK_TIMEOUT=120000 ``` **Rate Limits:** ```env # Add delays between requests DEEPSEEK_MAX_RETRIES=5 ``` **Context Too Large:** ```env # Switch to larger context provider LLM_PROVIDER=gemini GEMINI_MODEL=gemini-1.5-pro ``` ## ๐Ÿ“ˆ Monitoring and Metrics Enable detailed logging to monitor provider performance: ```env ACE_LOG_LEVEL=debug ``` Key metrics to track: - Token usage per provider - Response times - Error rates - Cost per ACE cycle ## ๐Ÿ”„ Migration Between Providers To switch providers without losing context: 1. Update `.env` file 2. Restart ACE MCP Server 3. Existing playbooks remain compatible 4. New generations use the new provider ```bash # Example migration docker-compose down # Update LLM_PROVIDER in .env docker-compose up -d ``` --- **Need Help?** Check the [main documentation](../README.md) or open an issue on GitHub.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Angry-Robot-Deals/ace-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server