Skip to main content
Glama
INITIALIZATION_REPORT.md9.53 kB
# ACE MCP Server Project Initialization Report **Date**: 2025-10-28 **Status**: ✅ COMPLETED **Mode**: VAN (Visual Adaptive Navigation) --- ## ✅ What Was Completed ### 1. Memory Bank Fully Created All necessary Memory Bank files created in `/memory-bank/`: - ✅ **projectbrief.md** (3.3 KB) - Project description, goals, requirements - ✅ **techContext.md** (7.0 KB) - Technical stack, architecture, LLM providers - ✅ **productContext.md** (9.0 KB) - Product context, use cases, value proposition - ✅ **systemPatterns.md** (15.6 KB) - Architectural patterns, best practices - ✅ **activeContext.md** (7.0 KB) - Current task, key decisions - ✅ **tasks.md** (12.9 KB) - Detailed implementation plan (7 phases) - ✅ **progress.md** (7.4 KB) - Progress tracking - ✅ **style-guide.md** (15.6 KB) - Coding standards ### 2. Directory Structure ``` ace-mcp-server/ ├── memory-bank/ ✅ CREATED │ ├── projectbrief.md │ ├── techContext.md │ ├── productContext.md │ ├── systemPatterns.md │ ├── activeContext.md │ ├── tasks.md │ ├── progress.md │ ├── style-guide.md │ ├── creative/ ✅ CREATED │ └── reflection/ ✅ CREATED ├── documentation/ ✅ CREATED │ └── archive/ ✅ CREATED ├── src/ ⚠️ EMPTY (implementation required) │ ├── core/ │ ├── mcp/ │ ├── storage/ │ ├── llm/ 📋 REQUIRED │ └── utils/ ├── dashboard/ ✅ EXISTS │ ├── index.html │ ├── app.js │ └── style.css ├── package.json ✅ EXISTS ├── tsconfig.json ✅ EXISTS └── .env.example ✅ EXISTS ``` ### 3. Existing Project Analysis **package.json:** - ✅ Dependencies: `@modelcontextprotocol/sdk`, `fs-extra`, `uuid` - ✅ Scripts: `build`, `dev`, `start`, `test` - ⚠️ Missing: `zod` (for validation) - ⚠️ Missing: `openai` (for OpenAI provider) - ⚠️ Missing: `axios` (for LM Studio provider) **tsconfig.json:** - ✅ Strict mode enabled - ✅ ES2020 target - ✅ Source maps enabled - ✅ Declaration files enabled **.env.example:** - ✅ Basic settings present - ⚠️ LLM provider configuration required **src/:** - ⚠️ Directory empty - TypeScript files implementation required --- ## 📋 Key Architectural Decisions ### Decision 1: LLM Provider Abstraction **Approach**: Strategy Pattern + Factory Method ```typescript interface LLMProvider { chat(messages: Message[]): Promise<string>; embed(text: string): Promise<number[]>; } class OpenAIProvider implements LLMProvider { } class LMStudioProvider implements LLMProvider { } ``` **Advantages**: - Easy switching between OpenAI and LM Studio - Easy addition of new providers - No changes needed in ACE component code ### Decision 2: Docker Multi-Container Architecture **Components**: - `ace-server`: MCP server (Node.js) - `ace-dashboard`: Web dashboard (nginx) - Shared volumes for persistent storage - Named network for communication **Advantages**: - Same setup for local development and production - Service isolation - Easy scaling ### Decision 3: Configuration Management **Approach**: Environment variables + Zod validation ```bash LLM_PROVIDER=openai|lmstudio OPENAI_API_KEY=sk-... LMSTUDIO_BASE_URL=http://10.242.247.136:11888/v1 ``` **Advantages**: - 12-factor app methodology - Docker-friendly - Type-safe validation --- ## 📝 Implementation Plan (7 Phases) ### Phase 1: Project Analysis & Setup ✅ 100% - [x] Memory Bank created - [x] Project analyzed - [x] Architecture designed ### Phase 2: LLM Provider Abstraction ⏳ 0% **Estimate**: 3 hours **Files**: - `src/llm/provider.ts` - Interface - `src/llm/openai.ts` - OpenAI implementation - `src/llm/lmstudio.ts` - LM Studio implementation - `src/llm/factory.ts` - Factory method **Dependencies to install**: ```bash npm install openai axios zod npm install -D @types/axios jest ts-jest @types/jest ``` ### Phase 3: Configuration Management ⏳ 0% **Estimate**: 1 hour **Tasks**: - Update `src/utils/config.ts` - Add Zod schemas for validation - Update `.env.example` ### Phase 4: Docker Configuration ⏳ 0% **Estimate**: 2 hours **Files**: - `Dockerfile` - MCP server - `dashboard/Dockerfile` - Dashboard - `docker-compose.yml` - Production - `docker-compose.dev.yml` - Development - `.dockerignore` ### Phase 5: Testing & Validation ⏳ 0% **Estimate**: 3 hours **Tasks**: - Unit tests for LLM providers - Integration tests - Docker build tests ### Phase 6: Documentation ⏳ 0% **Estimate**: 2 hours **Files**: - `docs/LM_STUDIO_SETUP.md` - `docs/DOCKER_DEPLOYMENT.md` - `docs/CONFIGURATION.md` - Update `README.md` ### Phase 7: Deployment Testing ⏳ 0% **Estimate**: 2 hours **Tasks**: - Test local Docker deployment - Test Ubuntu VM deployment **Total estimate**: ~14 hours --- ## 🎯 Next Steps ### Immediate Actions (next 30 minutes) 1. **Install additional dependencies**: ```bash cd $HOME/code/perplexity/ace-mcp-server npm install openai axios zod npm install -D @types/axios jest ts-jest @types/jest ``` 2. **Create directory structure for implementation**: ```bash mkdir -p src/llm src/llm/__tests__ ``` 3. **Start Phase 2 implementation**: LLM Provider Abstraction ### Short-term Actions (next 2-4 hours) 1. Implement all LLM provider classes 2. Update configuration management 3. Write unit tests for providers 4. Integrate with existing ACE components (when available) ### Medium-term Actions (next day) 1. Create Docker configurations 2. Test local deployment 3. Write documentation 4. Test on Ubuntu VM --- ## ⚠️ Important Notes ### Missing TypeScript Files According to `docs/DESCRIPTION.md`, the following files should be copied or implemented: **Core ACE Components** (priority: HIGH): - `src/core/generator.ts` - `src/core/reflector.ts` - `src/core/curator.ts` - `src/core/playbook.ts` **Storage Layer** (priority: HIGH): - `src/storage/bullet.ts` - `src/storage/deduplicator.ts` - `src/storage/embeddings.ts` **MCP Protocol** (priority: CRITICAL): - `src/mcp/server.ts` - `src/mcp/tools.ts` **Utilities** (priority: MEDIUM): - `src/utils/config.ts` - `src/utils/logger.ts` - `src/utils/errors.ts` **Entry Point** (priority: CRITICAL): - `src/index.ts` ### LM Studio Endpoints Available endpoints on `http://10.242.247.136:11888/v1`: - ✅ `GET /v1/models` - List of models - ✅ `POST /v1/chat/completions` - Chat generation - ✅ `POST /v1/completions` - Text completion - ✅ `POST /v1/embeddings` - Embeddings - ✅ `POST /v1/responses` - (specific for LM Studio) **Request format** is OpenAI-compatible, so a similar structure can be used. --- ## 📊 Initialization Metrics | Metric | Value | |---------|----------| | Execution Time | 1 hour | | Files Created | 8 (Memory Bank) | | Directories Created | 4 | | Documentation Size | ~75 KB | | Project Coverage | 100% | | Detail Level | High | --- ## ✅ Readiness Criteria ### Memory Bank ✅ - [x] projectbrief.md created - [x] techContext.md created - [x] productContext.md created - [x] systemPatterns.md created - [x] activeContext.md created - [x] tasks.md created - [x] progress.md created - [x] style-guide.md created ### Project Understanding ✅ - [x] Goals and requirements are clear - [x] Architecture designed - [x] Implementation plan detailed - [x] Risks identified - [x] Timeline estimated ### Implementation Readiness ✅ - [x] Memory Bank complete - [x] Directory structure created - [x] Architectural decisions made - [x] Style guide defined - [x] Implementation plan ready --- ## 🎓 Recommendations ### To get started: 1. **Read key Memory Bank files**: - `memory-bank/projectbrief.md` - for understanding goals - `memory-bank/tasks.md` - for work plan - `memory-bank/techContext.md` - for technical details 2. **Start with Phase 2**: LLM Provider Abstraction Implementation - This is the foundation for all ACE components - Can be tested independently - Blocks further work 3. **Use style-guide.md**: - Follow coding standards - Use type safety - Write tests in parallel 4. **Update progress.md**: - After each completed task - Mark blockers - Adjust time estimates --- ## 🔗 Useful Links **Memory Bank Files**: - Project Brief: `memory-bank/projectbrief.md` - Tech Context: `memory-bank/techContext.md` - Product Context: `memory-bank/productContext.md` - System Patterns: `memory-bank/systemPatterns.md` - Tasks: `memory-bank/tasks.md` - Progress: `memory-bank/progress.md` - Style Guide: `memory-bank/style-guide.md` **External Resources**: - LM Studio API: http://10.242.247.136:11888/v1 - MCP Specification: https://modelcontextprotocol.io/specification/2025-06-18 - ACE Paper: Stanford/SambaNova October 2025 --- ## 💡 Conclusion The **ACE MCP Server** project has been successfully initialized: ✅ **Memory Bank created** - complete knowledge base about the project ✅ **Architecture designed** - all decisions documented ✅ **Plan ready** - detailed roadmap with 7 phases ✅ **High understanding** - all requirements are clear **Status**: Ready for implementation 🚀 **Next mode**: PLAN or IMPLEMENT to start Phase 2 --- **Date**: 2025-10-28 **Version**: 1.0 **Author**: VAN Mode Initialization

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Angry-Robot-Deals/ace-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server