activeContext.md•7 kB
# Active Context: ACE MCP Server Initialization
## Current Task
**Task ID**: ACE-INIT-001
**Task Name**: Project Initialization with LLM Provider Abstraction and Docker Support
**Status**: In Progress
**Created**: 2025-10-28
**Priority**: High
## Task Objectives
1. ✅ Initialize Memory Bank structure
2. ⏳ Analyze existing project files
3. ⏳ Implement LLM provider abstraction layer
4. ⏳ Add Docker and Docker Compose configuration
5. ⏳ Update environment configuration
6. ⏳ Create deployment documentation
7. ⏳ Test local Docker deployment
8. ⏳ Document LM Studio integration
## Current Focus
**Phase**: VAN Mode - Project Initialization
**Step**: Creating Memory Bank files and analyzing project structure
## Key Decisions
### Decision 1: LLM Provider Architecture
**Decision**: Use Strategy pattern with factory method
**Rationale**:
- Allows easy switching between OpenAI and LM Studio
- No code changes needed to swap providers
- Easy to add new providers in future (Anthropic, local Ollama, etc.)
**Implementation**:
```typescript
interface LLMProvider {
chat(messages: Message[]): Promise<string>;
embed(text: string): Promise<number[]>;
}
```
### Decision 2: Docker Deployment Strategy
**Decision**: Multi-container with Docker Compose
**Rationale**:
- Separate server and dashboard containers
- Same configuration for local and remote
- Easy volume management for persistent data
- Network isolation
**Structure**:
- `ace-server`: Main MCP server
- `ace-dashboard`: Web interface
- Shared volume for contexts
- Named network for service communication
### Decision 3: Configuration Management
**Decision**: Environment variables with validation
**Rationale**:
- 12-factor app methodology
- Easy to switch between environments
- Secure (no secrets in code)
- Docker-friendly
**Key Variables**:
- `LLM_PROVIDER`: 'openai' | 'lmstudio'
- `OPENAI_API_KEY`: For OpenAI provider
- `LMSTUDIO_BASE_URL`: For LM Studio provider
- `ACE_CONTEXT_DIR`: Playbook storage path
- `ACE_DEDUP_THRESHOLD`: Similarity threshold
## Work Completed
### Memory Bank Files Created
- ✅ `projectbrief.md` - Project overview and objectives
- ✅ `techContext.md` - Technical architecture and stack
- ✅ `productContext.md` - Product vision and use cases
- ✅ `systemPatterns.md` - Design patterns and best practices
- ✅ `activeContext.md` - Current task tracking (this file)
### Project Analysis
- ✅ Verified existing structure (package.json, tsconfig.json, dashboard)
- ✅ Identified missing components (TypeScript source files)
- ✅ Analyzed LM Studio API endpoints
- ✅ Documented Docker requirements
## Next Steps
### Immediate (Next 30 mins)
1. Create `tasks.md` with detailed implementation checklist
2. Create `progress.md` for tracking
3. Create `style-guide.md` for coding standards
4. Analyze existing package.json dependencies
### Short-term (Next 2-4 hours)
1. Implement LLM provider abstraction layer
- Create `src/llm/provider.ts` interface
- Create `src/llm/openai.ts` implementation
- Create `src/llm/lmstudio.ts` implementation
- Update `src/utils/config.ts` for provider selection
2. Create Docker configurations
- Write `Dockerfile` for MCP server
- Write `Dockerfile` for dashboard
- Write `docker-compose.yml` for orchestration
- Write `docker-compose.dev.yml` for development
- Write `docker-compose.prod.yml` for production
3. Update environment configuration
- Enhance `.env.example` with LLM provider settings
- Create `.env.development` template
- Create `.env.production` template
### Medium-term (Next day)
1. Test implementations
- Unit tests for LLM providers
- Integration tests with mock LLM
- Docker build tests
- End-to-end workflow test
2. Documentation
- Update installation guide for Docker
- Create LM Studio setup guide
- Document provider switching process
- Create deployment guide for Ubuntu VM
## Open Questions
1. **LM Studio Authentication**: Does LM Studio require API keys?
- Answer: No, local server typically doesn't require auth
- Action: Make authentication optional for lmstudio provider
2. **Dashboard Docker Port**: What port should dashboard expose?
- Proposed: 3000 for development, configurable for production
- Action: Use environment variable `DASHBOARD_PORT`
3. **Context Volume Permissions**: How to handle file permissions in Docker?
- Action: Use named volume with appropriate user mapping
- Document permission setup for Ubuntu VM
4. **MCP Server Transport in Docker**: How does stdio work with Docker?
- Answer: MCP server runs on host, accesses Docker via IPC
- Alternative: HTTP transport for remote server access
- Action: Document both approaches
## Known Issues
1. **TypeScript Source Files Missing**: Need to be implemented based on DESCRIPTION.md
- Status: Documented in techContext.md
- Priority: High
- Next: Will be addressed in implementation phase
2. **No Tests Yet**: Test infrastructure needs to be set up
- Status: Will add Jest + ts-jest
- Priority: Medium
- Next: After core implementation
## Context References
### Files to Review
- `/Users/ug/code/perplexity/ace-mcp-server/package.json` - Current dependencies
- `/Users/ug/code/perplexity/ace-mcp-server/tsconfig.json` - TypeScript config
- `/Users/ug/code/perplexity/ace-mcp-server/.env.example` - Current env template
- `/Users/ug/code/perplexity/ace-mcp-server/docs/DESCRIPTION.md` - Full project spec
### External References
- LM Studio API: http://10.242.247.136:11888/v1
- MCP Specification: https://modelcontextprotocol.io/specification/2025-06-18
- ACE Paper: Stanford/SambaNova October 2025
## Communication Notes
- User prefers Russian language for communication
- Code, comments, and documentation in English
- User has LM Studio running at http://10.242.247.136:11888
- User needs both local Docker and Ubuntu VM deployment
## Risk Assessment
### Technical Risks
- **Low**: LLM provider abstraction is straightforward
- **Low**: Docker setup is standard practice
- **Medium**: MCP stdio transport in containerized environment
- **Low**: Dashboard containerization
### Mitigation Strategies
- Use established patterns (Strategy, Factory)
- Test both LLM providers early
- Document MCP server connection methods clearly
- Provide troubleshooting guides
## Success Criteria
This initialization phase is complete when:
- ✅ Memory Bank fully populated
- [ ] All TypeScript source files implemented
- [ ] Docker configurations working locally
- [ ] Both LLM providers functional
- [ ] Dashboard accessible in Docker
- [ ] Documentation updated
- [ ] Basic tests passing
## Timeline Estimate
- **Initialization Phase**: 1 hour (current)
- **Implementation Phase**: 4-6 hours
- **Testing Phase**: 2-3 hours
- **Documentation Phase**: 1-2 hours
- **Total**: ~10 hours for complete implementation
## Last Updated
2025-10-28 - Initial creation during VAN mode initialization