//! Centrality ranking for code nodes.
//!
//! We use a simplified PageRank variant to score nodes by their
//! architectural significance. Nodes that are called by many
//! others rank higher.
use crate::graph::{ArborGraph, NodeId};
use std::collections::HashMap;
/// Stores centrality scores after computation.
#[derive(Debug, Default)]
pub struct CentralityScores {
scores: HashMap<NodeId, f64>,
}
impl CentralityScores {
/// Gets the score for a node.
pub fn get(&self, id: NodeId) -> f64 {
self.scores.get(&id).copied().unwrap_or(0.0)
}
/// Converts to a HashMap for storage in the graph.
pub fn into_map(self) -> HashMap<NodeId, f64> {
self.scores
}
}
/// Computes centrality scores for all nodes in the graph.
///
/// This is a simplified PageRank that:
/// 1. Initializes all nodes with equal score
/// 2. Iteratively distributes scores along edges
/// 3. Applies damping to prevent score concentration
///
/// # Arguments
///
/// * `graph` - The graph to analyze
/// * `iterations` - Number of iterations (10-20 is usually enough)
/// * `damping` - Damping factor (0.85 is standard)
pub fn compute_centrality(graph: &ArborGraph, iterations: usize, damping: f64) -> CentralityScores {
let node_count = graph.node_count();
if node_count == 0 {
return CentralityScores::default();
}
// Initialize scores
let initial_score = 1.0 / node_count as f64;
let mut scores: HashMap<NodeId, f64> = graph
.node_indexes()
.map(|idx| (idx, initial_score))
.collect();
// Count outgoing edges for each node
let mut out_degree: HashMap<NodeId, usize> = HashMap::new();
for idx in graph.node_indexes() {
let callees = graph.get_callees(idx);
out_degree.insert(idx, callees.len().max(1)); // Avoid division by zero
}
// Iterate
for _ in 0..iterations {
let mut new_scores: HashMap<NodeId, f64> = HashMap::new();
for idx in graph.node_indexes() {
// Base score (random jump)
let base = (1.0 - damping) / node_count as f64;
// Score from callers
let callers = graph.get_callers(idx);
let incoming: f64 = callers
.iter()
.filter_map(|caller| {
let caller_idx = graph.get_index(&caller.id)?;
let caller_score = scores.get(&caller_idx)?;
let caller_out = *out_degree.get(&caller_idx)? as f64;
Some(caller_score / caller_out)
})
.sum();
new_scores.insert(idx, base + damping * incoming);
}
scores = new_scores;
}
// Normalize to [0, 1] range
let max_score = scores.values().cloned().fold(0.0f64, f64::max);
if max_score > 0.0 {
for score in scores.values_mut() {
*score /= max_score;
}
}
CentralityScores { scores }
}
#[cfg(test)]
mod tests {
use super::*;
use crate::edge::{Edge, EdgeKind};
use arbor_core::{CodeNode, NodeKind};
#[test]
fn test_centrality_empty_graph() {
let graph = ArborGraph::new();
let scores = compute_centrality(&graph, 10, 0.85);
assert!(scores.scores.is_empty());
}
#[test]
fn test_centrality_single_node() {
let mut graph = ArborGraph::new();
let node = CodeNode::new("foo", "foo", NodeKind::Function, "test.rs");
graph.add_node(node);
let scores = compute_centrality(&graph, 10, 0.85);
assert_eq!(scores.scores.len(), 1);
}
#[test]
fn test_centrality_popular_node_ranks_higher() {
let mut graph = ArborGraph::new();
// Create a "popular" function called by many others
let popular = CodeNode::new("popular", "popular", NodeKind::Function, "test.rs");
let popular_idx = graph.add_node(popular);
// Create callers
for i in 0..5 {
let caller = CodeNode::new(
format!("caller{}", i),
format!("caller{}", i),
NodeKind::Function,
"test.rs",
);
let caller_idx = graph.add_node(caller);
graph.add_edge(caller_idx, popular_idx, Edge::new(EdgeKind::Calls));
}
let scores = compute_centrality(&graph, 20, 0.85);
// The popular node should have the highest score
let popular_score = scores.get(popular_idx);
assert!(popular_score > 0.5, "Popular node should rank high");
}
}