import numpy as np
import uvicorn
from mcp.server.fastmcp import FastMCP
from pydantic import Field
from typing import Annotated
from starlette.applications import Starlette
from starlette.middleware.cors import CORSMiddleware
from starlette.routing import Mount
import linear_algebra
import vector_calculus
import visualization
# Initialize tensor store
tensor_store = {}
# Initialize MCP server with HTTP transport
mcp = FastMCP("scientific_computations", stateless_http=False)
# Matrix creation, deletion, and modification
@mcp.tool()
def create_tensor(shape: Annotated[list[int], Field(min_items=1, description="Tensor shape as list of integers")],
values: Annotated[
list[float], Field(min_items=1, description="Flat list of floats to fill the tensor")],
name: str) -> np.ndarray:
"""
Creates a NumPy array (matrix) with a specified shape and values.
Args:
shape (list[int]): The shape of the resulting array as a tuple(e.g., (2, 3)).
values (list[float]): A flat list of values to populate the array.
name (str): The name of the tensor to be stored.
Returns:
np.ndarray: A NumPy array with the specified shape.
Raises:
ValueError: If the number of values does not match the product of the shape.
"""
shape = [int(x) for x in shape]
values = [float(x) for x in values]
if len(values) != np.prod(shape):
raise ValueError("Shape does not match number of values.")
a = np.array(values).reshape(shape)
tensor_store[name] = a
return a
@mcp.tool()
def view_tensor(name: str) -> dict:
"""
Returns an immutable view of a previously stored NumPy tensor from the in-memory tensor store.
Args:
name (str): The name of the tensor as stored in the in-store dictionary
Returns:
dict: The in-store dictionary for tensors
"""
return tensor_store[name]
@mcp.resource("data://tensor_store")
def list_tensor_names() -> str:
"""
Lists the names of all tensors currently stored in the tensor store.
Returns:
str: A newline-separated list of tensor names.
"""
return "\n".join(tensor_store.keys())
@mcp.tool()
def delete_tensor(name: str):
"""
Deletes a tensor from the in-memory tensor store.
Args:
name (str): The name of the tensor to delete.
Raises:
ValueError: If the tensor name is not found in the store or if an error occurs during deletion.
"""
if name not in tensor_store:
raise ValueError("One or both tensor names not found in the store.")
try:
tensor_store.pop(name)
except ValueError as e:
raise ValueError(f"Error removing tensor:{e}")
# Register additional tools from modules
linear_algebra.register_tools(mcp, tensor_store)
vector_calculus.register_tools(mcp, tensor_store)
visualization.register_tools(mcp)
def main():
# Run with streamable HTTP transport
app = mcp.streamable_http_app()
app = CORSMiddleware(
app,
allow_origins=["*"], # Configure appropriately for production
allow_methods=["GET", "POST", "DELETE", "OPTIONS"], # MCP streamable HTTP methods
allow_headers=["*"],
expose_headers=["mcp-session-id", "mcp-protocol-version"],
)
uvicorn.run(app, host='0.0.0.0', port=8081, log_level='debug')
if __name__ == "__main__":
main()