# Configuration for the RAG MCP Application
# Client UI Configuration
# Orchestrator LLM model to use
ORCHESTRATOR_MODEL="qwen3:1.7b"
# Port for the Gradio UI
GRADIO_PORT=3000
# RAG Server Configuration
# Path to the data directory
DATA_PATH="data"
# Path to the ChromaDB directory
CHROMA_PATH="chroma_db"
# Embeddings model to use (e.g., for Google Generative AI)
EMBEDDINGS_MODEL="models/embedding-001"
# Number of results to retrieve from the vector store
RETRIEVER_NUM_RESULTS=5
# API Keys (if applicable)
# GOOGLE_API_KEY=your_google_api_key_here
MCP directory API
We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/Alex-ChanHC/rag-mcp-app'
If you have feedback or need assistance with the MCP directory API, please join our Discord server