# AgentOps MCP Server
[](https://smithery.ai/server/@AgentOps-AI/agentops-mcp)
The AgentOps MCP server provides access to observability and tracing data for debugging complex AI agent runs. This adds crucial context about where the AI agent succeeds or fails.
## Usage
### MCP Client Configuration
Add the following to your MCP configuration file:
```json
{
"mcpServers": {
"agentops-mcp": {
"command": "npx",
"args": ["agentops-mcp"],
"env": {
"AGENTOPS_API_KEY": ""
}
}
}
}
```
## Installation
### Installing via Cursor Deeplink
[](https://cursor.com/install-mcp?name=agentops&config=eyJjb21tYW5kIjoibnB4IGFnZW50b3BzLW1jcCIsImVudiI6eyJBR0VOVE9QU19BUElfS0VZIjoiIn19)
### Installing via Smithery
To install agentops-mcp for Claude Desktop automatically via [Smithery](https://smithery.ai/server/@AgentOps-AI/agentops-mcp):
```bash
npx -y @smithery/cli install @AgentOps-AI/agentops-mcp --client claude
```
### Local Development
To build the MCP server locally:
```bash
# Clone and setup
git clone https://github.com/AgentOps-AI/agentops-mcp.git
cd mcp
npm install
# Build the project
npm run build
# Run the server
npm pack
```
## Available Tools
### `auth`
Authorize using an AgentOps project API key and return JWT token.
**Parameters:**
- `api_key` (string): Your AgentOps project API key
### `get_trace`
Retrieve trace information by ID.
**Parameters:**
- `trace_id` (string): The trace ID to retrieve
### `get_span`
Get span information by ID.
**Parameters:**
- `span_id` (string): The span ID to retrieve
### `get_complete_trace`
Get comprehensive trace information including all spans and their metrics.
**Parameters:**
- `trace_id` (string): The trace ID
## Requirements
- Node.js >= 18.0.0
- AgentOps API key (passed as parameter to tools)
MCP directory API
We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/AgentOps-AI/agentops-mcp'
If you have feedback or need assistance with the MCP directory API, please join our Discord server