Skip to main content
Glama

restore_image

Restore or enhance existing images using natural language prompts to describe the desired improvements.

Instructions

Restore or enhance an existing image

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
promptYesThe text prompt describing the restoration to perform
fileYesThe filename of the input image to restore
previewNoAutomatically open generated images in default viewer

Implementation Reference

  • Handler logic for the 'restore_image' tool. Determines mode as 'restore' based on tool name, constructs ImageGenerationRequest with prompt, input image file, and other params, then delegates to ImageGenerator.editImage() for execution.
    case "edit_image": case "restore_image": { const mode = name === "edit_image" ? "edit" : "restore"; const imageRequest: ImageGenerationRequest = { prompt: args?.prompt as string, inputImage: args?.file as string, mode, seed: args?.seed as number, preview: args?.preview as boolean, noPreview: (args?.noPreview as boolean) || (args?.["no-preview"] as boolean), }; response = await this.imageGenerator.editImage(imageRequest); break; }
  • Input schema and metadata for the 'restore_image' tool, defining required 'prompt' and 'file' parameters with descriptions.
    { name: "restore_image", description: "Restore or enhance an existing image", inputSchema: { type: "object", properties: { prompt: { type: "string", description: "The text prompt describing the restoration to perform", }, file: { type: "string", description: "The filename of the input image to restore", }, preview: { type: "boolean", description: "Automatically open generated images in default viewer", default: false, }, }, required: ["prompt", "file"], }, },
  • Core implementation in ImageGenerator.editImage() that handles restoration (when mode='restore'). Loads input image as base64, sends to OpenRouter API via image-to-image endpoint with restoration prompt, saves output image, and handles preview.
    async editImage( request: ImageGenerationRequest ): Promise<ImageGenerationResponse> { try { if (!request.inputImage) { return { success: false, message: "Input image file is required for editing", error: "Missing inputImage parameter", }; } const fileResult = FileHandler.findInputFile(request.inputImage); if (!fileResult.found) { return { success: false, message: `Input image not found: ${request.inputImage}`, error: `Searched in: ${fileResult.searchedPaths.join(", ")}`, }; } const outputPath = FileHandler.ensureOutputDirectory(); const imageBase64 = await FileHandler.readImageAsBase64( fileResult.filePath! ); const fileName = path.basename(fileResult.filePath!); const mimeType = this.detectMimeType(fileName); const dataUrl = `data:${mimeType};base64,${imageBase64}`; const payload: Record<string, unknown> = { model: this.modelName, input: [ { role: "user", content: [ { type: "input_text", text: request.prompt, }, ], }, ], images: [dataUrl], }; if (request.seed !== undefined) { payload.seed = request.seed; } const response = await this.postJson<OpenRouterImageResponse>( this.generationPath, payload ); const imageBase64Result = this.parseImageFromResponse(response); if (!imageBase64Result) { return { success: false, message: `Failed to ${request.mode} image`, error: "No image data returned in OpenRouter response", }; } const filename = FileHandler.generateFilename( `${request.mode}_${request.prompt}`, "png", 0 ); const fullPath = await FileHandler.saveImageFromBase64( imageBase64Result, outputPath, filename ); await this.handlePreview([fullPath], request); return { success: true, message: `Successfully ${request.mode}d image`, generatedFiles: [fullPath], }; } catch (error: unknown) { logger.error(`Error in ${request.mode}Image:`, error); return { success: false, message: `Failed to ${request.mode} image`, error: this.handleApiError(error), }; } }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Aeven-AI/mcp-nanobanana'

If you have feedback or need assistance with the MCP directory API, please join our Discord server