Skip to main content
Glama
Abdullah-1121

MCP Chat

MCP Chat

MCP Chat is a command-line interface application. The application supports document retrieval, command-based prompts, and extensible tool integrations via the MCP (Model Control Protocol) architecture.

Prerequisites

  • Python 3.9+

  • Any Chat Completions LLM API Key and Provider (i.e: Gemini)

Related MCP server: MCP Toolbox

Setup

Step 1: Configure the environment variables

  1. Create or edit the .env file in the project root and verify that the following variables are set correctly:

LLM_API_KEY="" # Enter your GEMINI API secret key LLM_CHAT_COMPLETION_URL="https://generativelanguage.googleapis.com/v1beta/openai/" LLM_MODEL="gemini-2.0-flash"

Step 2: Install dependencies

uv is a fast Python package installer and resolver.

  1. Install uv, if not already installed:

pip install uv
  1. Create and activate a virtual environment:

uv venv source .venv/bin/activate # On Windows: .venv\Scripts\activate
  1. Install dependencies:

uv sync
  1. Start MCP Server:

uv run uvicorn mcp_server:mcp_app --reload
  1. Run the project with ChatAgent in CLI

uv run main.py
  1. Optionally start inspector

npx @modelcontextprotocol/inspector

Usage

Basic Interaction

Simply type your message and press Enter to chat with the model.

Document Retrieval

Use the @ symbol followed by a document ID to include document content in your query:

> Tell me about @deposition.md

Commands

Use the / prefix to execute commands defined in the MCP server:

> /summarize deposition.md

Commands will auto-complete when you press Tab.

Development

Adding New Documents

Edit the mcp_server.py file to add new documents to the docs dictionary.

Implementing MCP Features

To fully implement the MCP features:

  1. Complete the TODOs in mcp_server.py

  2. Implement the missing functionality in mcp_client.py

Linting and Typing Check

There are no lint or type checks implemented.

-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Abdullah-1121/MCP-2'

If you have feedback or need assistance with the MCP directory API, please join our Discord server