Skip to main content
Glama

FastMCP Supply Chain Optimizer

by ANSH-RIYAL
pricing_agent_tools.py•1.12 kB
class PricingAgentTools: def calculate_optimal_price(self, cost: float, margin: float, demand_factor: float) -> dict: """ Calculate optimal price using a simple formula. """ price = round((cost + margin) * demand_factor, 2) return {'price': price} def find_competitor_match(self, product_id: str) -> dict: """ Find nearest competitor product (simulated lookup). """ # Dummy competitor price for demonstration competitor_prices = {'P001': 22.99, 'P002': 18.50, 'P003': 25.00} price = competitor_prices.get(product_id, 19.99) return {'competitor_price': price} def generate_markdown_explanation(self, price_change: dict) -> dict: """ Generate markdown explanation for price changes. """ old = price_change.get('old_price', 'N/A') new = price_change.get('new_price', 'N/A') reason = price_change.get('reason', 'market adjustment') markdown = f"**Price Update**\nOld Price: ${old}\nNew Price: ${new}\nReason: {reason}" return {'markdown': markdown}

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ANSH-RIYAL/FastMCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server