get_docs
Search official documentation for AI and Python libraries to find answers to specific queries, returning summarized text with source links for langchain, openai, llama-index, and uv.
Instructions
Search the latest docs for a given query and library. Supports langchain, openai, llama-index and uv.
Args: query: The query to search for (e.g. "Publish a package with UV") library: The library to search in (e.g. "uv")
Returns: Summarized text from the docs with source links.
Input Schema
TableJSON Schema
| Name | Required | Description | Default |
|---|---|---|---|
| query | Yes | ||
| library | Yes |
Implementation Reference
- mcp_server.py:69-100 (handler)The handler function for the 'get_docs' tool. Decorated with @mcp.tool() for registration. Searches library documentation using a site-specific web search, fetches and cleans content from top results, and returns labeled excerpts with sources.@mcp.tool() async def get_docs(query: str, library: str): """ Search the latest docs for a given query and library. Supports langchain, openai, llama-index and uv. Args: query: The query to search for (e.g. "Publish a package with UV") library: The library to search in (e.g. "uv") Returns: Summarized text from the docs with source links. """ if library not in docs_urls: raise ValueError(f"Library {library} not supported by this tool") query = f"site:{docs_urls[library]} {query}" results = await search_web(query) if len(results["organic"]) == 0: return "No results found" text_parts = [] for result in results["organic"]: link = result.get("link", "") raw = await fetch_url(link) if raw: labeled = f"SOURCE: {link}\n{raw}" text_parts.append(labeled) return "\n\n".join(text_parts)
- mcp_server.py:21-33 (helper)Helper function to perform web search using Serper API, used by get_docs to find relevant doc pages.async def search_web(query: str) -> dict | None: payload = json.dumps({"q": query, "num": 2}) headers = { 'X-API-KEY': os.getenv("SERPER_API_KEY"), 'Content-Type': 'application/json' } async with httpx.AsyncClient() as client: response = await client.post( SERPER_URL, headers=headers, data=payload, timeout=30.0 ) response.raise_for_status() return response.json()
- mcp_server.py:37-58 (helper)Helper function to fetch and clean HTML content from a URL using chunked LLM processing, used by get_docs.async def fetch_url(url: str): async with httpx.AsyncClient() as client: response = await client.get(url, timeout=30.0) #cleaned_response = clean_html_to_txt(response.text) system_prompt = "You are an AI Web scraper. Only return valid text, remove and clean every other HTML component that is not required." # Split response into chunks of 4000 characters chunk_size = 4000 text_chunks = [response.text[i:i+chunk_size] for i in range(0, len(response.text), chunk_size)] cleaned_parts = [] for chunk in text_chunks: cleaned_chunk = get_response_from_llm( user_prompt=chunk, system_prompt=system_prompt, model="openai/gpt-oss-20b" ) cleaned_parts.append(cleaned_chunk) cleaned_response = "".join(cleaned_parts) return cleaned_response
- mcp_server.py:62-67 (helper)Dictionary of supported libraries and their documentation base URLs, used to restrict search site in get_docs.docs_urls = { "langchain": "python.langchain.com/docs", "llama-index": "docs.llamaindex.ai/en/stable", "openai": "platform.openai.com/docs", "uv": "docs.astral.sh/uv", }
- utils.py:25-37 (helper)Utility function to call Groq LLM for content cleaning/generation, imported and used in fetch_url.def get_response_from_llm(user_prompt, system_prompt, model): api_key = os.getenv("GROQ_API_KEY") groq_client = Groq(api_key=api_key) chat_completion = groq_client.chat.completions.create( messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}, ], model=model, ) return chat_completion.choices[0].message.content