Click on "Install Server".
Wait a few minutes for the server to deploy. Once ready, it will show a "Started" state.
In the chat, type
@followed by the MCP server name and your instructions, e.g., "@RAGFlow MCP Serversearch my datasets for the 2024 expense policy"
That's it! The server will respond to your query, and you can continue using it as needed.
Here is a step-by-step guide with screenshots.
ragflow-mcp-server-continue MCP server
RAGFlow API MCP Server,可以查找知识库和聊天。
Components
Tools
list_datasets
列出所有数据集
返回数据集的 ID 和名称
create_chat
创建一个新的聊天助手
输入:
name: 聊天助手的名称
dataset_id: 数据集的 ID
返回创建的聊天助手的 ID、名称和会话 ID
chat
与聊天助手进行对话
输入:
session_id: 聊天助手的会话 ID
question: 提问内容
返回聊天助手的回答
retrieve
检索相关信息
输入:
dataset_ids: 数据集的 ID
question: 提问内容
返回从知识库检索到的内容
Configuration
[TODO: Add configuration details specific to your implementation]
Quickstart
Install
GitHub Copilot
.vscode/mcp.json
Continue
config.yaml
Claude Desktop
On MacOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json
On Windows: %APPDATA%/Claude/claude_desktop_config.json
Development
Building and Publishing
To prepare the package for distribution:
Sync dependencies and update lockfile:
Build package distributions:
This will create source and wheel distributions in the dist/ directory.
Publish to PyPI:
Note: You'll need to set PyPI credentials via environment variables or command flags:
Token:
--tokenorUV_PUBLISH_TOKENOr username/password:
--username/UV_PUBLISH_USERNAMEand--password/UV_PUBLISH_PASSWORD
Debugging
Since MCP servers run over stdio, debugging can be challenging. For the best debugging experience, we strongly recommend using the MCP Inspector.
You can launch the MCP Inspector via npm with this command:
Upon launching, the Inspector will display a URL that you can access in your browser to begin debugging.