Skip to main content
Glama
README.mdโ€ข15.1 kB
# ๐Ÿš€ MCP Router > **Intelligent Model Context Protocol Router for Cursor IDE** > > Automatically selects the optimal LLM model for each task based on query analysis, complexity, and your preferred strategy. [![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](LICENSE) [![Python 3.10+](https://img.shields.io/badge/python-3.10+-blue.svg)](https://www.python.org/downloads/) [![MCP Compatible](https://img.shields.io/badge/MCP-Compatible-green.svg)](https://modelcontextprotocol.io/) --- ## ๐Ÿ“ System Architecture ``` โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ CURSOR IDE โ”‚ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ”‚ โ”‚ User Query โ”‚ โ”‚ โ”‚ โ”‚ "Refactor this authentication system across multiple files" โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ–ผ โ”‚ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ”‚ โ”‚ MCP Router Server โ”‚ โ”‚ โ”‚ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ Query Analyzer โ”‚โ”€โ”€โ”€โ–ถโ”‚ Model Scorer โ”‚โ”€โ”€โ–ถโ”‚ Routing Decision โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ€ข Task Type โ”‚ โ”‚ โ€ข Quality Score โ”‚ โ”‚ โ€ข Selected Model โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ€ข Complexity โ”‚ โ”‚ โ€ข Cost Score โ”‚ โ”‚ โ€ข Confidence โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ€ข Requirements โ”‚ โ”‚ โ€ข Speed Score โ”‚ โ”‚ โ€ข Reasoning โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ€ข Token Estimate โ”‚ โ”‚ โ€ข Strategy Weight โ”‚ โ”‚ โ€ข Alternatives โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ–ผ โ”‚ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ”‚ โ”‚ Model Registry (17 Models) โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ FLAGSHIP โ”‚ โ”‚ REASONING โ”‚ โ”‚ NATIVE/FAST โ”‚ โ”‚ BUDGET/LEGACY โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ€ข GPT-5.2 โ”‚ โ”‚ โ€ข o3 โ”‚ โ”‚ โ€ข Composer1 โ”‚ โ”‚ โ€ข GPT-4o-mini โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ€ข Claude4.5 โ”‚ โ”‚ โ€ข o3-mini โ”‚ โ”‚ โ€ข Gemini 3 โ”‚ โ”‚ โ€ข Claude Haiku โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ Opus โ”‚ โ”‚ โ€ข Claude3.7 โ”‚ โ”‚ Pro/Flash โ”‚ โ”‚ โ€ข DeepSeek V3 โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ€ข Claude4.5 โ”‚ โ”‚ Sonnet โ”‚ โ”‚ โ”‚ โ”‚ โ€ข DeepSeek R1 โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ Sonnet โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ–ผ โ”‚ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ”‚ โ”‚ Cursor Executes Query โ”‚ โ”‚ โ”‚ โ”‚ (Using its own API keys for selected model) โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ ``` ### Data Flow ``` โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Query โ”‚โ”€โ”€โ”€โ”€โ”€โ–ถโ”‚ Analyze โ”‚โ”€โ”€โ”€โ”€โ”€โ–ถโ”‚ Score โ”‚โ”€โ”€โ”€โ”€โ”€โ–ถโ”‚ Recommend โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ”‚ โ”‚ โ–ผ โ–ผ โ–ผ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Task Type: โ”‚ โ”‚ Apply โ”‚ โ”‚ Model: โ”‚ โ”‚ โ€ข reasoning โ”‚ โ”‚ Strategy: โ”‚ โ”‚ Claude 4.5 โ”‚ โ”‚ โ€ข code_gen โ”‚ โ”‚ โ€ข balanced โ”‚ โ”‚ Sonnet โ”‚ โ”‚ โ€ข edit โ”‚ โ”‚ โ€ข quality โ”‚ โ”‚ โ”‚ โ”‚ Complexity: โ”‚ โ”‚ โ€ข speed โ”‚ โ”‚ Confidence: โ”‚ โ”‚ โ€ข medium โ”‚ โ”‚ โ€ข cost โ”‚ โ”‚ 88.45% โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ ``` --- ## โœจ Features | Feature | Description | |---------|-------------| | ๐Ÿค– **Intelligent Routing** | Automatically selects the best model based on query analysis | | ๐Ÿ“Š **4 Routing Strategies** | `balanced` / `cost` / `speed` / `quality` | | ๐Ÿ” **Query Analysis** | Detects task type, complexity, and special requirements | | ๐Ÿ’ฐ **Cost Estimation** | Estimates costs before execution | | โšก **17 Models** | Latest 2025 models from OpenAI, Anthropic, Google, Cursor, DeepSeek | | ๐Ÿ”ง **Cursor Native** | Zero API keys needed - Cursor handles execution | --- ## ๐Ÿ† Supported Models (2025) ### Tier 1: Flagship Models (Complex Architecture & Refactoring) | Model | Provider | Context | Cost (in/out) | Quality | |-------|----------|---------|---------------|---------| | **GPT-5.2** | OpenAI | 256K | $5.00/$15.00 | 0.99/0.98 | | **Claude 4.5 Opus** | Anthropic | 200K | $25.00/$75.00 | 0.99/0.99 | | **Claude 4.5 Sonnet** | Anthropic | 200K | $5.00/$25.00 | 0.97/0.98 | ### Tier 2: Reasoning Models (Chain of Thought) | Model | Provider | Context | Cost (in/out) | Quality | |-------|----------|---------|---------------|---------| | **o3** | OpenAI | 200K | $10.00/$40.00 | 0.99/0.95 | | **o3-mini (High)** | OpenAI | 128K | $1.50/$6.00 | 0.95/0.92 | | **Claude 3.7 Sonnet** | Anthropic | 200K | $4.00/$20.00 | 0.96/0.96 | ### Tier 3: Native & Fast Models | Model | Provider | Context | Cost (in/out) | Quality | |-------|----------|---------|---------------|---------| | **Composer 1** | Cursor | 128K | $0.10/$0.30 | 0.88/0.92 | | **Gemini 3 Pro** | Google | **2M** | $2.00/$8.00 | 0.96/0.94 | | **Gemini 3 Flash** | Google | 1M | $0.10/$0.40 | 0.88/0.90 | ### Tier 4: Budget/Legacy Models | Model | Provider | Context | Quality | |-------|----------|---------|---------| | GPT-4o / GPT-4o-mini | OpenAI | 128K | 0.95/0.85 | | Claude 3.5 Sonnet/Haiku | Anthropic | 200K | 0.96/0.88 | | Gemini 2.0 Pro/Flash | Google | 2M/1M | 0.94/0.85 | | **DeepSeek V3** | DeepSeek | 128K | 0.92/0.94 | | **DeepSeek R1** | DeepSeek | 128K | 0.96/0.92 | --- ## ๐Ÿš€ Quick Start ### 1. Install ```bash git clone https://github.com/AI-Castle-Labs/mcp-router.git cd mcp-router pip install -r requirements.txt pip install mcp # MCP SDK for Cursor integration ``` ### 2. Configure Cursor Add to `~/.cursor/mcp.json`: ```json { "version": "1.0", "mcpServers": { "mcp-router": { "command": "python3", "args": ["/path/to/mcp-router/src/mcp_server.py"], "env": {} } } } ``` > **Note:** No API keys needed! Cursor handles all API calls with its own keys. ### 3. Restart Cursor The MCP router will appear in your agent tools. Use it with: - `@mcp-router get_model_recommendation "your task description"` - `@mcp-router analyze_query "your query"` - `@mcp-router list_models` --- ## ๐Ÿ’ป CLI Usage ```bash # Route a query (shows which model would be selected) python main.py route "Explain how neural networks work" # Route with strategy python main.py route "Refactor this codebase" --strategy quality # List all registered models python main.py list # Show routing statistics python main.py stats ``` ### Example Output ``` ============================================================ Routing Decision ============================================================ Query: Refactor this complex authentication system... Selected Model: Claude 4.5 Sonnet Model ID: claude-4.5-sonnet Provider: anthropic Confidence: 88.45% Reasoning: Model is optimized for code_edit tasks; Selected for highest quality Alternatives: - Composer 1 (composer-1) - Claude 3.5 Haiku (claude-3-5-haiku-20241022) - GPT-4o-mini (gpt-4o-mini) ``` --- ## ๐ŸŽฏ Routing Strategies | Strategy | Description | Best For | |----------|-------------|----------| | `balanced` | Optimizes for cost, speed, and quality equally | General use | | `quality` | Prioritizes highest capability models | Complex tasks, refactoring | | `speed` | Prioritizes fastest response time | Quick edits, simple tasks | | `cost` | Prioritizes cheapest models | Budget-conscious usage | --- ## ๐Ÿ Python API ```python from src.router import MCPRouter # Initialize router (loads 17 default models) router = MCPRouter() # Route a query decision = router.route( "Analyze this codebase architecture", strategy="quality" ) print(f"Selected: {decision.selected_model.name}") print(f"Model ID: {decision.selected_model.model_id}") print(f"Confidence: {decision.confidence:.1%}") print(f"Reasoning: {decision.reasoning}") # Get alternatives for alt in decision.alternatives[:3]: print(f" Alternative: {alt.name}") ``` --- ## ๐Ÿ“ Project Structure ``` mcp-router/ โ”œโ”€โ”€ src/ โ”‚ โ”œโ”€โ”€ router.py # Core routing logic + 17 model definitions โ”‚ โ”œโ”€โ”€ mcp_server.py # MCP server for Cursor integration โ”‚ โ”œโ”€โ”€ client.py # API client for model execution โ”‚ โ””โ”€โ”€ cursor_wrapper.py # Cursor-specific utilities โ”œโ”€โ”€ config/ โ”‚ โ””โ”€โ”€ cursor_mcp_config.json # Template for Cursor config โ”œโ”€โ”€ scripts/ โ”‚ โ””โ”€โ”€ setup_cursor.sh # Automated setup script โ”œโ”€โ”€ docs/ โ”‚ โ”œโ”€โ”€ cursor_integration.md โ”‚ โ”œโ”€โ”€ QUICKSTART_CURSOR.md โ”‚ โ””โ”€โ”€ AGENT_SETTINGS.md โ”œโ”€โ”€ main.py # CLI entry point โ”œโ”€โ”€ requirements.txt โ””โ”€โ”€ README.md ``` --- ## ๐Ÿ”ง Adding Custom Models ```python from src.router import MCPRouter, ModelCapabilities, TaskType router = MCPRouter() router.register_model(ModelCapabilities( name="My Custom Model", provider="custom", model_id="custom-model-v1", supports_reasoning=True, supports_code=True, supports_streaming=True, max_tokens=8192, context_window=32000, cost_per_1k_tokens_input=1.0, cost_per_1k_tokens_output=2.0, avg_latency_ms=600, reasoning_quality=0.85, code_quality=0.90, speed_score=0.80, preferred_tasks=[TaskType.CODE_GENERATION], api_key_env_var="CUSTOM_API_KEY" )) ``` --- ## ๐ŸŽฎ Cursor Commands Create `.cursor/commands/route.md`: ```markdown --- description: "Get model recommendation from MCP router for the current task" --- Use the MCP router to determine the best model for the task at hand. 1. Analyze the current context 2. Call `@mcp-router get_model_recommendation` with task description 3. Present the recommendation with confidence and alternatives 4. Suggest switching models if needed ``` --- ## ๐Ÿ“Š MCP Tools Available | Tool | Description | |------|-------------| | `route_query` | Route a query and get model recommendation | | `get_model_recommendation` | Get recommendation without execution | | `list_models` | List all 17 registered models | | `get_routing_stats` | Get usage statistics | | `analyze_query` | Analyze query characteristics | --- ## ๐Ÿค Contributing 1. Fork the repository 2. Create a feature branch 3. Make your changes 4. Submit a pull request --- ## ๐Ÿ“„ License MIT License - see [LICENSE](LICENSE) for details. --- <p align="center"> <b>Built for the Cursor IDE ecosystem</b><br> <a href="https://github.com/AI-Castle-Labs/mcp-router">AI Castle Labs</a> </p>

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/AI-Castle-Labs/mcp-router'

If you have feedback or need assistance with the MCP directory API, please join our Discord server