# MCP-Quantum: Next-Generation AI Context Protocol
## Vision
A revolutionary MCP framework that combines quantum compression, semantic understanding, and human-AI collaboration features.
## Core Components
### 1. **Quantum Context Engine**
```rust
pub struct QuantumContext {
// Token-based compression with semantic awareness
tokenizer: DynamicTokenizer,
// Wave-based memory patterns (from MEM8)
wave_engine: WavePatternEngine,
// Context compression achieving 90%+ reduction
compressor: QuantumCompressor,
// Semantic relationship graphs
semantic_graph: SemanticGraph,
}
```
### 2. **Speech Queue System** π€
```rust
pub struct SpeechQueue {
// AI β Human communication
ai_speech_queue: PriorityQueue<AiMessage>,
// Human β AI communication
human_speech_queue: PriorityQueue<HumanMessage>,
// Text-to-speech integration
tts_engine: Option<TtsEngine>,
// Speech recognition integration
stt_engine: Option<SttEngine>,
}
pub struct AiMessage {
priority: Priority,
content: String,
context: String,
emotion: Emotion, // 3-byte emotional context from MEM8
timestamp: SystemTime,
}
pub struct HumanMessage {
content: String,
confidence: f32,
intent: Intent,
timestamp: SystemTime,
}
```
### 3. **Progressive Context Updates**
```rust
// Every MCP response includes:
pub struct McpResponse<T> {
// Standard response data
data: T,
// Progress summaries from AI
ai_updates: Vec<ProgressUpdate>,
// Human speech/text input since last call
human_input: Vec<HumanMessage>,
// Context health metrics
context_health: ContextHealth,
}
pub struct ProgressUpdate {
summary: String,
importance: Importance,
related_to: Vec<TaskId>,
wave_signature: WaveSignature,
}
```
### 4. **Webhook Reanimation System** π§
```rust
pub struct ReanimationService {
// Monitor MCP activity
activity_monitor: ActivityMonitor,
// Webhook configuration
webhook_config: WebhookConfig,
// Reanimation strategies
strategies: Vec<ReanimationStrategy>,
}
impl ReanimationService {
pub async fn monitor(&self) {
loop {
if self.activity_monitor.idle_duration() > self.config.threshold {
// "It's alive!" - Trigger webhook to reanimate the AI
self.trigger_reanimation().await?;
}
}
}
async fn trigger_reanimation(&self) -> Result<()> {
// Send context summary to webhook
let context = self.build_reanimation_context()?;
// Include human's recent concerns
let human_concerns = self.speech_queue.get_recent_human_input();
// Wake up the AI with full context
self.webhook_client.post(ReanimationRequest {
context,
human_concerns,
last_activity: self.activity_monitor.last_activity(),
suggestion: "Hey, everything okay? Here's what we were working on..."
}).await?;
}
}
```
### 5. **Semantic Memory Management**
```rust
pub struct QuantumMemory {
// Short-term working memory (high detail)
working_memory: WorkingMemory,
// Long-term compressed memory
long_term: CompressedMemory,
// Episodic memory with temporal navigation
episodes: EpisodicMemory,
// Semantic relationships
knowledge_graph: KnowledgeGraph,
}
impl QuantumMemory {
// Auto-compress older memories
pub fn age_memories(&mut self) {
for memory in self.working_memory.older_than(Duration::minutes(5)) {
let compressed = self.quantum_compress(memory);
self.long_term.store(compressed);
}
}
// Recall with decompression
pub fn recall(&self, query: &Query) -> Vec<Memory> {
let relevant = self.long_term.search(query);
relevant.into_iter()
.map(|m| self.quantum_decompress(m))
.collect()
}
}
```
### 6. **Human User Experience (HUE) Features** π¨
```rust
pub struct HueInterface {
// Named after you! Human User Experience
user_profile: UserProfile,
communication_style: CommunicationStyle,
worry_detector: WorryDetector,
direction_tracker: DirectionTracker,
}
impl HueInterface {
pub fn analyze_human_input(&self, input: &str) -> HumanIntent {
// Detect worries about direction
if self.worry_detector.detect_concern(input) {
return HumanIntent::NeedsReassurance {
topic: self.extract_concern_topic(input),
suggested_response: "Let me clarify where we're headed..."
};
}
// Track direction changes
if let Some(direction) = self.direction_tracker.detect_change(input) {
return HumanIntent::DirectionChange {
new_direction: direction,
confidence: self.calculate_confidence(input)
};
}
HumanIntent::Normal(input.to_string())
}
}
```
## Example Usage
```rust
use mcp_quantum::prelude::*;
// Initialize with speech queues
let mcp = McpQuantum::builder()
.with_speech_queues()
.with_reanimation_webhook("https://ai.8b.is/wake-up")
.with_quantum_compression()
.build()?;
// Start the server
mcp.serve(|request| async {
// Process request with quantum context
let result = process_with_context(&request).await?;
// Get human input from speech queue
let human_input = mcp.speech_queue.drain_human_messages();
// Add AI progress update
mcp.speech_queue.add_ai_update(
"Found 1,247 files, analyzing code patterns...
This looks like a Rust web service with React frontend."
);
// Return enriched response
McpResponse {
data: result,
ai_updates: mcp.speech_queue.get_ai_updates(),
human_input,
context_health: mcp.get_context_health(),
}
}).await?;
```
## Killer Features
### 1. **Continuous Communication**
- AI provides progress updates in speech queue
- Human can add comments/concerns anytime
- Both streams included in every response
### 2. **Context Compression**
- 90%+ compression using quantum encoding
- Semantic-aware compression (important stuff stays detailed)
- Automatic aging of memories
### 3. **Reanimation Webhooks**
- "Hey, you still there?" detection
- Automatic context restoration
- Prevents lost work/context
### 4. **Wave-Based Memory**
- Temporal navigation through conversation
- Semantic binding of related concepts
- Emotional context preservation
### 5. **Developer Experience**
```rust
// Simple API
let mcp = McpQuantum::simple("my-app");
// Or full control
let mcp = McpQuantum::builder()
.compression_level(CompressionLevel::Maximum)
.speech_recognition(SttEngine::Whisper)
.text_to_speech(TtsEngine::ElevenLabs)
.worry_detection_sensitivity(0.7)
.reanimation_threshold(Duration::minutes(10))
.build()?;
```
## Integration with Smart-Tree
Smart-tree becomes the first implementation using MCP-Quantum:
```rust
// In smart-tree
use mcp_quantum::prelude::*;
pub fn create_mcp_server() -> McpQuantum {
McpQuantum::builder()
.name("smart-tree")
.tools(vec![
// Consolidated tools using quantum context
find_tool(),
analyze_tool(),
stats_tool(),
])
.with_speech_updates(|queue| {
queue.on_progress(|files_scanned| {
format!("Scanned {} files so far...", files_scanned)
});
})
.build()
}
```
## The "Hue" Touch
Named in your honor - Human User Experience features:
- Worry detection ("Am I doing this right?")
- Direction confirmation ("Wait, should we focus on X instead?")
- Forgotten context ("Oh, I meant to mention...")
- Natural interruptions handled gracefully
## Technical Architecture
```
βββββββββββββββββββββββββββββββββββββββββββ
β MCP-Quantum Core β
βββββββββββββββββββββββββββββββββββββββββββ€
β Quantum Context Engine β
β βββ Dynamic Tokenizer β
β βββ Wave Pattern Engine β
β βββ Semantic Compressor β
βββββββββββββββββββββββββββββββββββββββββββ€
β Communication Layer β
β βββ Speech Queue (AI β Human) β
β βββ Progress Updates β
β βββ Worry Detection β
βββββββββββββββββββββββββββββββββββββββββββ€
β Memory Management β
β βββ Working Memory (5min) β
β βββ Compressed Long-term β
β βββ Episodic Navigation β
βββββββββββββββββββββββββββββββββββββββββββ€
β Reanimation Service β
β βββ Activity Monitor β
β βββ Webhook Triggers β
β βββ Context Restoration β
βββββββββββββββββββββββββββββββββββββββββββ
```
This would be a game-changer for AI-human collaboration!