Skip to main content
Glama

MCP-Mem0

by 888Greys

y# šŸ• PomPom-AI: Intelligent Memory System for Qodo AI

PomPom-AI (PomPom Artificial Intelligence) - A smart MCP (Model Context Protocol) server that provides persistent memory capabilities for Qodo AI. Just like Pompompurin's friendly and reliable nature, PomPom-AI remembers everything important and helps your AI assistant provide personalized, intelligent responses across all conversations.

šŸŽÆ Personal Setup for Qodo AI Integration

This repository is configured for personal use with Qodo AI, providing long-term memory storage and retrieval capabilities.

Qodo AI MCP Configuration

{ "pompom-ai": { "url": "http://localhost:8051/sse" } }

šŸš€ Quick Start Guide

Prerequisites

  • Python 3.12+

  • OpenRouter API key (for Claude 3.7 Sonnet)

  • Supabase PostgreSQL database (configured)

Installation

  1. Clone and setup:

    git clone <your-repo-url> cd pompom-ai pip install -e .
  2. Configure environment: Copy .env.example to .env and update with your credentials:

    TRANSPORT=sse HOST=0.0.0.0 PORT=8051 LLM_PROVIDER=openrouter LLM_BASE_URL=https://openrouter.ai/api/v1 LLM_API_KEY=your-openrouter-api-key LLM_CHOICE=anthropic/claude-3.7-sonnet DATABASE_URL=your-supabase-postgresql-url
  3. Start the server:

    python src/main.py
  4. Test connectivity:

    .\test_server.ps1

🧠 How It Works - Detailed Explanation

Architecture Overview

Qodo AI ←→ MCP Protocol ←→ PomPom-AI Server ←→ Mem0 ←→ ChromaDB + PostgreSQL

Component Breakdown

1. MCP Server (

  • FastMCP Framework: Handles MCP protocol communication

  • SSE Transport: Server-Sent Events for real-time communication on port 8051

  • Lifespan Management: Initializes and manages Mem0 client connection

  • Three Core Tools: Exposes memory operations to Qodo AI

2. Memory Tools Available to Qodo AI

save_memory(text: str)

  • Purpose: Store any information in long-term memory

  • Usage: When you tell Qodo AI something important to remember

  • Process:

    1. Receives text from Qodo AI

    2. Processes through Claude 3.7 Sonnet for fact extraction

    3. Generates embeddings using ChromaDB's built-in model

    4. Stores in both ChromaDB (vectors) and PostgreSQL (metadata)

get_all_memories()

  • Purpose: Retrieve all stored memories for context

  • Usage: When Qodo AI needs complete memory context

  • Process:

    1. Queries Mem0 for all memories associated with default user

    2. Returns paginated results (50 items default)

    3. Provides full context for conversation continuity

search_memories(query: str, limit: int = 3)

  • Purpose: Find relevant memories using semantic search

  • Usage: When Qodo AI needs specific information

  • Process:

    1. Converts query to embeddings

    2. Performs vector similarity search in ChromaDB

    3. Returns most relevant memories ranked by relevance

3. Memory Configuration (

LLM Configuration (OpenRouter + Claude)

llm_config = { "provider": "openai", # OpenRouter uses OpenAI-compatible API "config": { "model": "anthropic/claude-3.7-sonnet", "temperature": 0.2, # Low temperature for consistent memory processing "max_tokens": 1500 } }

Embedding Configuration (ChromaDB Built-in)

  • No external API calls: Uses ChromaDB's default embedding function

  • Local processing: Embeddings generated locally for privacy

  • No additional costs: No embedding API fees

Vector Store Configuration (ChromaDB)

vector_store_config = { "provider": "chroma", "config": { "collection_name": "mem0_memories", "path": "./chroma_db" # Local SQLite database } }

4. Data Flow When You Use Qodo AI

Saving a Memory:

You: "Remember that I prefer PowerShell for automation tasks" ↓ Qodo AI → MCP Protocol → PomPom-AI → save_memory("I prefer PowerShell for automation tasks") ↓ Claude 3.7 Sonnet processes and extracts key facts ↓ ChromaDB generates embeddings locally ↓ Stored in: ChromaDB (vectors) + PostgreSQL (metadata) ↓ PomPom-AI Response: "Successfully saved memory: I prefer PowerShell for automation tasks"

Retrieving Memories:

You: "What do you know about my preferences?" ↓ Qodo AI → MCP Protocol → PomPom-AI → search_memories("preferences", limit=5) ↓ ChromaDB performs vector similarity search ↓ PomPom-AI returns relevant memories about your preferences ↓ Qodo AI uses this context to provide personalized responses

5. Storage Architecture

ChromaDB (Local -

  • Vector embeddings: Semantic representations of memories

  • Fast similarity search: Sub-second query responses

  • Local SQLite: No external dependencies

  • Collection: mem0_memories

PostgreSQL (Supabase)

  • Metadata storage: User associations, timestamps

  • Structured data: Relationships and memory organization

  • Cloud backup: Persistent storage across devices

  • Scalability: Handles large memory datasets

šŸ”§ Memory Management Tools

View Current Memories

# Python script python show_current_memories.py # PowerShell script .\show_memories.ps1

Visual Dashboard

# Streamlit dashboard streamlit run chroma_viewer.py # HTML dashboard with live data python dashboard_server.py

Server Testing

# Test server connectivity .\test_server.ps1

šŸ“Š Memory Analytics

The system tracks:

  • Total memories stored

  • Memory categories/collections

  • Average memory length

  • Search frequency patterns

  • Memory creation timestamps

šŸ”’ Privacy & Security

  • Local embeddings: No data sent to external embedding APIs

  • Encrypted storage: PostgreSQL with SSL

  • Local processing: ChromaDB runs entirely on your machine

  • API key security: Environment variables only

šŸŽ›ļø Configuration Options

Memory Processing

  • Temperature: 0.2 (consistent fact extraction)

  • Max tokens: 1500 (detailed memory processing)

  • Model: Claude 3.7 Sonnet (high-quality reasoning)

Search Parameters

  • Default limit: 3 memories per search

  • Similarity threshold: Automatic (ChromaDB optimized)

  • Collection scope: Single user (isolated memories)

šŸš€ Usage Patterns with Qodo AI

Personal Information

"Remember that I work as a software engineer and prefer Python and PowerShell" "I live in timezone UTC+3" "My favorite IDE is VS Code"

Project Context

"I'm working on a MCP server project using FastMCP and Mem0" "The project uses OpenRouter for LLM and ChromaDB for vectors" "Port 8051 is used for the SSE transport"

Preferences & Settings

"I prefer detailed explanations with code examples" "Always use PowerShell for Windows automation tasks" "Format code blocks with syntax highlighting"

šŸ”„ Maintenance

Regular Tasks

  • Monitor ChromaDB size (./chroma_db/)

  • Check PostgreSQL connection health

  • Review memory quality and relevance

  • Update API keys as needed

Troubleshooting

  • Server won't start: Check .env configuration

  • Memory not saving: Verify PostgreSQL connection

  • Search not working: Restart server to refresh ChromaDB

  • Qodo AI can't connect: Confirm port 8051 is open

šŸ“ˆ Performance Optimization

  • ChromaDB: Optimized for <1000 memories per collection

  • PostgreSQL: Indexed for fast metadata queries

  • Memory size: Optimal range 50-500 characters per memory

  • Search speed: Sub-100ms for typical queries

šŸŽÆ Best Practices

  1. Memory Quality: Store specific, actionable information

  2. Regular Cleanup: Remove outdated or irrelevant memories

  3. Categorization: Use consistent language for similar topics

  4. Testing: Regularly test memory retrieval accuracy

  5. Backup: PostgreSQL provides automatic cloud backup

This system transforms Qodo AI into a truly personalized assistant that remembers your preferences, project context, and important information across all conversations.

šŸ• Why "PomPom-AI"?

Just like Pompompurin is known for being:

  • šŸ¤— Friendly & Reliable - PomPom-AI is always there to help remember what's important

  • 🧠 Smart & Attentive - Intelligently processes and organizes your memories

  • šŸ’› Loyal Companion - Grows smarter about your preferences over time

  • šŸŽÆ Focused & Efficient - Quickly finds exactly what you need when you need it

PomPom-AI = PomPom (friendly like Pompompurin) + AI (Artificial Intelligence)

Related MCP Servers

  • -
    security
    F
    license
    -
    quality
    Model Context Protocol (MCP) server implementation for semantic search and memory management using TxtAI. This server provides a robust API for storing, retrieving, and managing text-based memories with semantic search capabilities. You can use Claude and Cline AI Also
    Last updated -
    11
    • Apple
  • -
    security
    F
    license
    -
    quality
    A TypeScript implementation of the Model Context Protocol server that enables creation, management, and semantic search of memory streams with Mem0 integration.
    Last updated -
  • -
    security
    A
    license
    -
    quality
    A Model Context Protocol server that provides AI agents with persistent memory capabilities through Mem0, allowing them to store, retrieve, and semantically search memories.
    Last updated -
    574
    MIT License
  • -
    security
    A
    license
    -
    quality
    A Model Context Protocol server that integrates AI assistants with Mem0.ai's persistent memory system, allowing models to store, retrieve, search, and manage different types of memories.
    Last updated -
    12
    MIT License
    • Apple

View all related MCP servers

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/888Greys/mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server