Skip to main content
Glama

MCP-Mem0

by 888Greys

y# 🐕 PomPom-AI: Intelligent Memory System for Qodo AI

PomPom-AI (PomPom Artificial Intelligence) - A smart MCP (Model Context Protocol) server that provides persistent memory capabilities for Qodo AI. Just like Pompompurin's friendly and reliable nature, PomPom-AI remembers everything important and helps your AI assistant provide personalized, intelligent responses across all conversations.

🎯 Personal Setup for Qodo AI Integration

This repository is configured for personal use with Qodo AI, providing long-term memory storage and retrieval capabilities.

Qodo AI MCP Configuration

{ "pompom-ai": { "url": "http://localhost:8051/sse" } }

🚀 Quick Start Guide

Prerequisites

  • Python 3.12+
  • OpenRouter API key (for Claude 3.7 Sonnet)
  • Supabase PostgreSQL database (configured)

Installation

  1. Clone and setup:
    git clone <your-repo-url> cd pompom-ai pip install -e .
  2. Configure environment: Copy .env.example to .env and update with your credentials:
    TRANSPORT=sse HOST=0.0.0.0 PORT=8051 LLM_PROVIDER=openrouter LLM_BASE_URL=https://openrouter.ai/api/v1 LLM_API_KEY=your-openrouter-api-key LLM_CHOICE=anthropic/claude-3.7-sonnet DATABASE_URL=your-supabase-postgresql-url
  3. Start the server:
    python src/main.py
  4. Test connectivity:
    .\test_server.ps1

🧠 How It Works - Detailed Explanation

Architecture Overview

Qodo AI ←→ MCP Protocol ←→ PomPom-AI Server ←→ Mem0 ←→ ChromaDB + PostgreSQL

Component Breakdown

1. MCP Server (src/main.py)
  • FastMCP Framework: Handles MCP protocol communication
  • SSE Transport: Server-Sent Events for real-time communication on port 8051
  • Lifespan Management: Initializes and manages Mem0 client connection
  • Three Core Tools: Exposes memory operations to Qodo AI
2. Memory Tools Available to Qodo AI

save_memory(text: str)

  • Purpose: Store any information in long-term memory
  • Usage: When you tell Qodo AI something important to remember
  • Process:
    1. Receives text from Qodo AI
    2. Processes through Claude 3.7 Sonnet for fact extraction
    3. Generates embeddings using ChromaDB's built-in model
    4. Stores in both ChromaDB (vectors) and PostgreSQL (metadata)

get_all_memories()

  • Purpose: Retrieve all stored memories for context
  • Usage: When Qodo AI needs complete memory context
  • Process:
    1. Queries Mem0 for all memories associated with default user
    2. Returns paginated results (50 items default)
    3. Provides full context for conversation continuity

search_memories(query: str, limit: int = 3)

  • Purpose: Find relevant memories using semantic search
  • Usage: When Qodo AI needs specific information
  • Process:
    1. Converts query to embeddings
    2. Performs vector similarity search in ChromaDB
    3. Returns most relevant memories ranked by relevance
3. Memory Configuration (src/utils.py)

LLM Configuration (OpenRouter + Claude)

llm_config = { "provider": "openai", # OpenRouter uses OpenAI-compatible API "config": { "model": "anthropic/claude-3.7-sonnet", "temperature": 0.2, # Low temperature for consistent memory processing "max_tokens": 1500 } }

Embedding Configuration (ChromaDB Built-in)

  • No external API calls: Uses ChromaDB's default embedding function
  • Local processing: Embeddings generated locally for privacy
  • No additional costs: No embedding API fees

Vector Store Configuration (ChromaDB)

vector_store_config = { "provider": "chroma", "config": { "collection_name": "mem0_memories", "path": "./chroma_db" # Local SQLite database } }

4. Data Flow When You Use Qodo AI

Saving a Memory:

You: "Remember that I prefer PowerShell for automation tasks" ↓ Qodo AI → MCP Protocol → PomPom-AI → save_memory("I prefer PowerShell for automation tasks") ↓ Claude 3.7 Sonnet processes and extracts key facts ↓ ChromaDB generates embeddings locally ↓ Stored in: ChromaDB (vectors) + PostgreSQL (metadata) ↓ PomPom-AI Response: "Successfully saved memory: I prefer PowerShell for automation tasks"

Retrieving Memories:

You: "What do you know about my preferences?" ↓ Qodo AI → MCP Protocol → PomPom-AI → search_memories("preferences", limit=5) ↓ ChromaDB performs vector similarity search ↓ PomPom-AI returns relevant memories about your preferences ↓ Qodo AI uses this context to provide personalized responses

5. Storage Architecture

ChromaDB (Local - ./chroma_db/)

  • Vector embeddings: Semantic representations of memories
  • Fast similarity search: Sub-second query responses
  • Local SQLite: No external dependencies
  • Collection: mem0_memories

PostgreSQL (Supabase)

  • Metadata storage: User associations, timestamps
  • Structured data: Relationships and memory organization
  • Cloud backup: Persistent storage across devices
  • Scalability: Handles large memory datasets

🔧 Memory Management Tools

View Current Memories

# Python script python show_current_memories.py # PowerShell script .\show_memories.ps1

Visual Dashboard

# Streamlit dashboard streamlit run chroma_viewer.py # HTML dashboard with live data python dashboard_server.py

Server Testing

# Test server connectivity .\test_server.ps1

📊 Memory Analytics

The system tracks:

  • Total memories stored
  • Memory categories/collections
  • Average memory length
  • Search frequency patterns
  • Memory creation timestamps

🔒 Privacy & Security

  • Local embeddings: No data sent to external embedding APIs
  • Encrypted storage: PostgreSQL with SSL
  • Local processing: ChromaDB runs entirely on your machine
  • API key security: Environment variables only

🎛️ Configuration Options

Memory Processing

  • Temperature: 0.2 (consistent fact extraction)
  • Max tokens: 1500 (detailed memory processing)
  • Model: Claude 3.7 Sonnet (high-quality reasoning)

Search Parameters

  • Default limit: 3 memories per search
  • Similarity threshold: Automatic (ChromaDB optimized)
  • Collection scope: Single user (isolated memories)

🚀 Usage Patterns with Qodo AI

Personal Information

"Remember that I work as a software engineer and prefer Python and PowerShell" "I live in timezone UTC+3" "My favorite IDE is VS Code"

Project Context

"I'm working on a MCP server project using FastMCP and Mem0" "The project uses OpenRouter for LLM and ChromaDB for vectors" "Port 8051 is used for the SSE transport"

Preferences & Settings

"I prefer detailed explanations with code examples" "Always use PowerShell for Windows automation tasks" "Format code blocks with syntax highlighting"

🔄 Maintenance

Regular Tasks

  • Monitor ChromaDB size (./chroma_db/)
  • Check PostgreSQL connection health
  • Review memory quality and relevance
  • Update API keys as needed

Troubleshooting

  • Server won't start: Check .env configuration
  • Memory not saving: Verify PostgreSQL connection
  • Search not working: Restart server to refresh ChromaDB
  • Qodo AI can't connect: Confirm port 8051 is open

📈 Performance Optimization

  • ChromaDB: Optimized for <1000 memories per collection
  • PostgreSQL: Indexed for fast metadata queries
  • Memory size: Optimal range 50-500 characters per memory
  • Search speed: Sub-100ms for typical queries

🎯 Best Practices

  1. Memory Quality: Store specific, actionable information
  2. Regular Cleanup: Remove outdated or irrelevant memories
  3. Categorization: Use consistent language for similar topics
  4. Testing: Regularly test memory retrieval accuracy
  5. Backup: PostgreSQL provides automatic cloud backup

This system transforms Qodo AI into a truly personalized assistant that remembers your preferences, project context, and important information across all conversations.

🐕 Why "PomPom-AI"?

Just like Pompompurin is known for being:

  • 🤗 Friendly & Reliable - PomPom-AI is always there to help remember what's important
  • 🧠 Smart & Attentive - Intelligently processes and organizes your memories
  • 💛 Loyal Companion - Grows smarter about your preferences over time
  • 🎯 Focused & Efficient - Quickly finds exactly what you need when you need it

PomPom-AI = PomPom (friendly like Pompompurin) + AI (Artificial Intelligence)

Related MCP Servers

  • -
    security
    F
    license
    -
    quality
    Model Context Protocol (MCP) server implementation for semantic search and memory management using TxtAI. This server provides a robust API for storing, retrieving, and managing text-based memories with semantic search capabilities. You can use Claude and Cline AI Also
    Last updated -
    6
    Python
    • Apple
  • -
    security
    F
    license
    -
    quality
    A TypeScript implementation of the Model Context Protocol server that enables creation, management, and semantic search of memory streams with Mem0 integration.
    Last updated -
    TypeScript
  • -
    security
    A
    license
    -
    quality
    A Model Context Protocol server that provides AI agents with persistent memory capabilities through Mem0, allowing them to store, retrieve, and semantically search memories.
    Last updated -
    488
    Python
    MIT License
  • -
    security
    A
    license
    -
    quality
    A Model Context Protocol server that integrates AI assistants with Mem0.ai's persistent memory system, allowing models to store, retrieve, search, and manage different types of memories.
    Last updated -
    9
    Python
    MIT License
    • Apple

View all related MCP servers

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/888Greys/mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server