Skip to main content
Glama
verify_optimization.py1.66 kB
import asyncio # import json - removed unused import import os import sys # from datetime import datetime - removed unused import # Add parent dir to path sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from mcp_kql_server.memory import MemoryManager async def test_memory_updates(): print("Testing MemoryManager updates...") db_path = "test_memory_opt.db" if os.path.exists(db_path): os.remove(db_path) mm = MemoryManager(db_path=db_path) # Test schema update (execution_time_ms) try: mm.add_successful_query("cluster", "db", "query", "desc", execution_time_ms=123.45) print("✅ add_successful_query with execution_time_ms passed") except Exception as e: print(f"❌ add_successful_query failed: {e}") import traceback traceback.print_exc() try: mm.store_learning_result("query", {"data": 1}, "test", execution_time_ms=50.0) print("✅ store_learning_result with execution_time_ms passed") except Exception as e: print(f"❌ store_learning_result failed: {e}") import traceback traceback.print_exc() metrics = mm.get_performance_metrics() print(f"Metrics: {metrics}") if "average_execution_time_ms" in metrics: print("✅ get_performance_metrics passed") else: print("❌ get_performance_metrics missing keys") # Clean up if os.path.exists(db_path): try: os.remove(db_path) except OSError: pass async def main(): await test_memory_updates() if __name__ == "__main__": asyncio.run(main())

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/4R9UN/mcp-kql-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server