Skip to main content
Glama
24mlight

A-Share MCP Server

macroeconomic.py2.62 kB
"""Use cases for macroeconomic data tools.""" from typing import Optional from src.data_source_interface import FinancialDataSource from src.formatting.markdown_formatter import format_table_output from src.services.validation import validate_output_format, validate_year_type_reserve def fetch_deposit_rate_data(data_source: FinancialDataSource, *, start_date: Optional[str], end_date: Optional[str], limit: int, format: str) -> str: validate_output_format(format) df = data_source.get_deposit_rate_data(start_date=start_date, end_date=end_date) meta = {"dataset": "deposit_rate", "start_date": start_date, "end_date": end_date} return format_table_output(df, format=format, max_rows=limit, meta=meta) def fetch_loan_rate_data(data_source: FinancialDataSource, *, start_date: Optional[str], end_date: Optional[str], limit: int, format: str) -> str: validate_output_format(format) df = data_source.get_loan_rate_data(start_date=start_date, end_date=end_date) meta = {"dataset": "loan_rate", "start_date": start_date, "end_date": end_date} return format_table_output(df, format=format, max_rows=limit, meta=meta) def fetch_required_reserve_ratio_data(data_source: FinancialDataSource, *, start_date: Optional[str], end_date: Optional[str], year_type: str, limit: int, format: str) -> str: validate_output_format(format) validate_year_type_reserve(year_type) df = data_source.get_required_reserve_ratio_data(start_date=start_date, end_date=end_date, year_type=year_type) meta = {"dataset": "required_reserve_ratio", "start_date": start_date, "end_date": end_date, "year_type": year_type} return format_table_output(df, format=format, max_rows=limit, meta=meta) def fetch_money_supply_data_month(data_source: FinancialDataSource, *, start_date: Optional[str], end_date: Optional[str], limit: int, format: str) -> str: validate_output_format(format) df = data_source.get_money_supply_data_month(start_date=start_date, end_date=end_date) meta = {"dataset": "money_supply_month", "start_date": start_date, "end_date": end_date} return format_table_output(df, format=format, max_rows=limit, meta=meta) def fetch_money_supply_data_year(data_source: FinancialDataSource, *, start_date: Optional[str], end_date: Optional[str], limit: int, format: str) -> str: validate_output_format(format) df = data_source.get_money_supply_data_year(start_date=start_date, end_date=end_date) meta = {"dataset": "money_supply_year", "start_date": start_date, "end_date": end_date} return format_table_output(df, format=format, max_rows=limit, meta=meta)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/24mlight/a-share-mcp-is-just-i-need'

If you have feedback or need assistance with the MCP directory API, please join our Discord server