plan.md•19.2 kB
# MCP Code Analysis Enhancement Plan
## Overview
This document outlines the strategic plan for enhancing the MCP (Model Context Protocol) server for code analysis. The goal is to optimize the server for AI-assisted development, ensuring tools are easily discoverable, well-documented, and produce consistent, useful results for AI agents.
## Areas for Enhancement
### 1. Tool Description & Documentation
- **Goal**: Improve AI understanding of available tools and their usage
- **Action Items**:
- ✅ Add comprehensive JSDoc comments to all tool registration functions
- ✅ Create standardized parameter descriptions across all tools
- ✅ Implement consistent "examples" field in all tool descriptions
- ✅ Generate automated documentation from tool schemas
### 2. Result Formatting
- **Goal**: Standardize tool outputs for optimal AI consumption
- **Action Items**:
- ✅ Define a consistent JSON output schema for all tools
- ✅ Include metadata in responses (timing, version, etc.)
- ✅ Format complex data for easier parsing (nested objects, typed arrays)
- Add semantic markers to highlight important parts of results
### 3. Tool Composition
- **Goal**: Enable multi-step analysis workflows
- **Action Items**:
- Create a workflow engine to chain tool executions
- Implement preset workflows for common code analysis patterns
- Add parameterization of workflows for flexibility
- Build a workflow visualization component
### 4. Context Sharing
- **Goal**: Maintain state across sequential tool invocations
- **Action Items**:
- ✅ Implement a session management system
- Create a caching layer for analysis results
- ✅ Add context persistence between related operations
- Enable cross-referencing between tool results
### 5. Testing Framework
- **Goal**: Ensure reliability of tools when used by AI
- **Action Items**:
- ✅ Create unit tests for each individual tool
- Implement integration tests for tool combinations
- ✅ Add performance benchmarks for response times
- Build test fixtures for common code patterns
## Technology Choices
### Hybrid Architecture Approach
We'll implement a hybrid architecture to optimize for both development speed and performance:
1. **TypeScript for Server Core**
- MCP server infrastructure and API layer
- Tool registration and orchestration
- Integration with MCP SDK
- Developer experience tooling
- State management (XState) and high-level workflow orchestration
- API and service layers
2. **Rust for Performance-Critical Components**
- Code parsers and analyzers
- Graph traversal algorithms
- Memory-intensive operations
- High-performance metric calculations
- Implemented as standalone binaries or WASM modules
- Focus on tools where performance matters most (metrics, parsing, static analysis)
3. **Python for ML/AI Components**
- Code classification models
- Suggestion generation
- Pattern detection
- Integration with ML libraries
- Leveraging existing ML ecosystems for code understanding
### Implementation Strategy
We're adopting a tailored approach for each component in our architecture:
1. **Session Context**: Redis + XState integration
- Redis for distributed state persistence
- XState for state machine modeling
- Session sharing across multiple server instances
2. **Tool Composition**: XState-driven workflow engine
- Define reusable workflow templates
- State machines for complex tool sequences
- Visual workflow debugging and monitoring
3. **Performance-Critical Analysis**: Rust modules with TypeScript wrappers
- Native code for performance-intensive operations
- Consistent TypeScript interfaces for all tools
- WASM packaging for browser compatibility when needed
4. **Knowledge Graph**: Neo4j or specialized graph database
- Model code relationships as a connected graph
- Efficient traversal and pattern matching
- Support for complex relationship queries
### State Management with XState
We'll use XState for modeling complex AI agent states and workflows:
- **Statechart Modeling**: Formally define agent states and transitions
- **Visualization**: Use XState's visualization tools for debugging and documentation
- **Context Management**: Leverage XState's built-in context for maintaining state
- **Composition**: Create modular, composable state machines for different analysis flows
### AI-Tool Synchronization
We'll implement multiple synchronization mechanisms:
1. **Event-Based Architecture**
- Pub/sub system for tool completion events
- WebSocket support for real-time updates
- Event replay for state reconstruction
2. **Caching Layer**
- Redis for distributed caching
- Versioned cache entries
- TTL-based expiration strategy
### Schema Validation with Zod
We'll use Zod for comprehensive schema validation:
- **Request Validation**: Validate tool inputs with detailed error messages
- **Response Validation**: Ensure all tool responses conform to our standard format
- **Schema Generation**: Automatically generate documentation from Zod schemas
- **Runtime Type Safety**: Leverage TypeScript integration for type inference
### Component Implementation
| Component | Primary Technology | Supporting Technologies |
| -------------------- | ------------------- | ------------------------- |
| Server Core | TypeScript | Express, MCP SDK |
| State Management | XState | Redis |
| Schema Validation | Zod | TypeScript |
| Tool Composition | TypeScript + XState | - |
| Performance Analysis | Rust | WASM, TypeScript bindings |
| Knowledge Graph | TypeScript | Neo4j, TypeScript |
| Code Parsing | Rust | Tree-sitter |
| ML Components | Python | TensorFlow/PyTorch |
| Testing Framework | Vitest | - |
## Implementation Recommendations
### 1. Standardize Tool Response Format
```typescript
// Example standardized response format with Zod schema
import { z } from "zod";
// Define the schema with Zod
export const ToolResponseSchema = z.object({
data: z.any(),
metadata: z.object({
tool: z.string(),
version: z.string(),
executionTime: z.number(),
timestamp: z.string(),
}),
status: z.object({
success: z.boolean(),
code: z.number(),
message: z.string().optional(),
}),
context: z
.object({
sessionId: z.string().optional(),
relatedResults: z.array(z.string()).optional(),
})
.optional(),
});
// Type derived from the schema
export type ToolResponse<T> = z.infer<typeof ToolResponseSchema> & {
data: T;
};
// Helper function for creating valid responses
export function createToolResponse<T>(
data: T,
tool: string,
success = true,
contextData?: { sessionId?: string; relatedResults?: string[] }
): ToolResponse<T> {
return {
data,
metadata: {
tool,
version: "1.0.0", // Should be dynamically pulled from package
executionTime: 0, // Should be calculated
timestamp: new Date().toISOString(),
},
status: {
success,
code: success ? 200 : 400,
message: success ? undefined : "An error occurred",
},
context: contextData,
};
}
```
- ✅ Implement this interface across all tool responses
- ✅ Create helper functions for generating standard responses
- ✅ Add TypeScript types for all response objects
- ✅ Use Zod for runtime validation of responses
### 2. Tool Discovery Mechanism
- ✅ Create a new MCP tool `list-available-tools` that returns:
- All registered tools with descriptions
- Parameter schemas and examples
- Categories and tags for filtering
- Implement a tool capability graph showing relationships
- Add search functionality for finding tools by capability
### 3. Session Context Implementation
- ✅ Create a session management system with:
- Session creation/termination API
- State persistence between calls
- Timeout and garbage collection
- Context sharing between related tools
- Implement through Redis or similar for scalability
- ✅ Integrate with XState for state management
### 4. Tool Documentation Expansion
- For each tool parameter, add:
- ✅ Detailed description
- ✅ Expected format
- ✅ Example values
- Common errors
- Generate interactive documentation site from schemas
- ✅ Auto-generate examples from Zod schemas
### 5. AI-Specific Workflows
Create composition tools for common AI tasks:
- `analyze-code-quality` - Combines metrics, linting, and best practices
- `refactor-suggestion` - Analyzes code and suggests improvements
- `dependency-impact` - Analyzes change impact across codebase
- `architecture-overview` - Generates high-level system understanding
## Implementation Timeline
### Phase 1: Foundation (Complete) ✅
- ✅ Standardize response formats with Zod schemas
- Created consistent success, error, and partial response formats
- Implemented Zod schemas for response validation
- Added utility functions for generating responses
- Ensured TypeScript type inference from schemas
- ✅ Implement basic tool documentation improvements
- Added JSDoc comments with examples
- Created standardized parameter descriptions
- Implemented schema-based documentation
- Used Zod describe() for rich parameter metadata
- ✅ Create initial test framework
- Set up Vitest for testing
- Implemented mock MCP server
- Created shared test utilities
- Added proper lifecycle management in tests
- ✅ Set up XState for core state management
- Implemented tool machine with typed states
- Created tool execution service
- Added parameter validation
- Implemented execution history tracking
- ✅ Implement stateful tool support
- Added session management
- Created state persistence between calls
- Modified schemas to include sessionId
- Provided helper functions for session interaction
- ✅ Contract validation and verification
- Implemented API contract verification
- Added runtime schema validation
- Created integration tests for contract adherence
- Documented interface contracts
### Phase 2: Redis Integration and Performance Optimization (Weeks 3-4)
- **Redis Session Management**
- Implement Redis-backed session store
- Add distributed session locking
- Create TTL-based session expiration
- Implement session migration utilities
- **Performance Optimization**
- Profile and optimize tool execution
- Implement caching for expensive operations
- Add batch processing capabilities
- Optimize state serialization and deserialization
- **Tool Discovery and Metadata**
- Create comprehensive tool registry
- Add rich metadata to tool definitions
- Implement tool search and filtering
- Create tool relationship graph
- **Initial Rust-based Tools**
- Implement code parsing using Tree-sitter
- Create code complexity analyzer
- Build dependency graph generator
- Add performance benchmarking tool
- **Enhanced Error Handling**
- Create standardized error codes
- Add detailed error context
- Implement error recovery strategies
- Add error logging and aggregation
### Phase 3: Advanced Capabilities and Workflows (Weeks 5-8)
- **Workflow Engine with XState**
- Create workflow definitions with XState
- Implement workflow persistence
- Add parameterized workflow templates
- Create workflow visualization
- **Advanced Analysis Tools**
- Implement code quality scoring
- Add semantic code understanding
- Create refactoring suggestion tools
- Build architecture visualization
- **Integration Testing Framework**
- Create integration test fixtures
- Implement end-to-end test scenarios
- Add performance regression tests
- Create compatibility test suite
- **API Gateway and Load Balancing**
- Implement API gateway for tool access
- Add request rate limiting
- Create load balancing for heavy tools
- Implement prioritization for critical operations
- **Documentation and Developer Experience**
- Create interactive documentation site
- Add visualizations for tool capabilities
- Implement playground for tool experimentation
- Create detailed tutorials and examples
## Phase 2 Technical Details
### Redis Session Store Implementation
We'll implement a Redis-backed session store with the following capabilities:
```typescript
export interface RedisSessionStoreOptions {
redisUrl: string;
prefix?: string;
defaultTtl?: number; // in seconds
lockTimeout?: number; // in milliseconds
}
export class RedisSessionStore implements SessionStore {
constructor(options: RedisSessionStoreOptions);
// Core SessionStore interface
async getSession<T>(sessionId: string): Promise<T | null>;
async setSession<T>(sessionId: string, state: T, ttl?: number): Promise<void>;
async clearSession(sessionId: string): Promise<void>;
async getSessions(): Promise<string[]>;
// Extended capabilities
async acquireLock(
sessionId: string,
timeout?: number
): Promise<string | null>;
async releaseLock(sessionId: string, lockToken: string): Promise<boolean>;
async extendSessionTtl(sessionId: string, ttl: number): Promise<boolean>;
async getSessionTtl(sessionId: string): Promise<number | null>;
async createSessionIfNotExists<T>(
sessionId: string,
initialState: T
): Promise<T>;
}
```
### Performance Optimization Strategy
For Phase 2, we'll focus on the following performance optimizations:
1. **Caching Layer**
- Implement Redis-backed result caching
- Add cache invalidation strategies
- Create tiered caching (memory + Redis)
- Implement cache warming for common operations
2. **State Optimization**
- Reduce serialization overhead
- Implement incremental state updates
- Add lazy loading for context data
- Optimize state machine transitions
3. **Batch Processing**
- Add support for batch tool execution
- Implement parallel execution where applicable
- Create queue management for heavy operations
- Add prioritization for interactive operations
4. **Memory Management**
- Implement streaming for large results
- Add memory usage monitoring
- Create auto-scaling session cleanup
- Optimize object pooling for frequent operations
### Rust-based Tool Integration
We'll implement a standard pattern for integrating Rust-based tools:
```typescript
import { spawnSync } from "child_process";
import { z } from "zod";
import { createStatefulTool } from "../statefulTool";
const ComplexityAnalysisSchema = z.object({
filePath: z.string().describe("Path to the file to analyze"),
options: z
.object({
metrics: z
.array(z.enum(["cyclomatic", "cognitive", "halstead"]))
.default(["cyclomatic"]),
threshold: z
.number()
.optional()
.describe("Complexity threshold for highlighting"),
})
.optional(),
});
export const complexityAnalysisTool = createStatefulTool({
name: "complexityAnalysis",
description: "Analyzes code complexity using various metrics",
schema: ComplexityAnalysisSchema,
handler: async (params, context) => {
try {
const result = spawnSync("./bin/complexity_analyzer", [
params.filePath,
"--format=json",
`--metrics=${params.options?.metrics.join(",") || "cyclomatic"}`,
params.options?.threshold
? `--threshold=${params.options.threshold}`
: "",
]);
if (result.status !== 0) {
return createErrorResponse({
message: "Complexity analysis failed",
code: "COMPLEXITY_ANALYSIS_ERROR",
details: result.stderr.toString(),
});
}
const analysisResult = JSON.parse(result.stdout.toString());
return createSuccessResponse(analysisResult);
} catch (error) {
return createErrorResponse({
message: "Failed to execute complexity analysis",
code: "EXECUTION_ERROR",
details: error instanceof Error ? error.message : String(error),
});
}
},
});
```
## Success Metrics
We will consider Phase 2 successful when we achieve the following metrics:
1. **Performance**
- Response time under 100ms for 95% of tool executions
- Support for 5000+ concurrent sessions
- Memory usage stable with increasing sessions
2. **Reliability**
- 99.9% success rate for tool executions
- Zero memory leaks in extended testing
- Graceful error handling for all edge cases
3. **Developer Experience**
- 90% test coverage for core components
- Comprehensive documentation for all tools
- Interactive example for each tool
4. **Scalability**
- Linear scaling with added resources
- Support for distributed deployment
- Efficient resource utilization
## Next Steps
1. Review and approve this enhancement plan
2. Prioritize specific action items
3. Assign implementation tasks to team members
4. Set up tracking and reporting for progress
## Tech Debt
The following items represent technical debt that should be addressed in future iterations.
### 1. Redis Connectivity Issues
- **Issue**: While Redis availability checks pass with simple ping tests, actual session operations fail with connection errors.
- **Current State**: `redis-cli ping` returns successfully, but Redis session store operations fail with "Redis client not connected" errors.
- **Workaround**: Using memory session store temporarily by setting `preferMemory: true` or `FORCE_MEMORY_SESSION=true`.
- **Impact**:
- Memory store is fully functional for development and single-instance deployments
- Missing Redis persistence for production scenarios with multiple instances
- Potential data loss on server restarts with memory store
#### Investigation Plan
1. **Redis Configuration Check**:
- Review Redis server configuration for authentication requirements
- Check connection limits and timeout settings
- Verify Redis is not in protected mode that restricts connections
2. **Network/Firewall Issues**:
- Confirm Redis port (6379) is not being blocked
- Check for any network policies affecting Redis connectivity
3. **Connection Handling Improvements**:
- Review Redis client initialization in `RedisSessionStore`
- Implement better connection retry logic
- Add more detailed connection error logging
4. **Client Library Compatibility**:
- Verify compatibility between Redis server version and Node.js client
- Check for known issues in the Redis client library
#### Resolution Timeline
- **Short-term**: Continue using memory store for development
- **Medium-term**: Implement improved Redis connection error handling and diagnostics
- **Long-term**: Provide additional backend options (e.g., SQLite, file-based) for greater flexibility
This tech debt should be prioritized before deploying to production environments that require state persistence across multiple instances or server restarts.