Skip to main content
Glama

CodeAnalysis MCP Server

by 0xjcf
plan.md19.2 kB
# MCP Code Analysis Enhancement Plan ## Overview This document outlines the strategic plan for enhancing the MCP (Model Context Protocol) server for code analysis. The goal is to optimize the server for AI-assisted development, ensuring tools are easily discoverable, well-documented, and produce consistent, useful results for AI agents. ## Areas for Enhancement ### 1. Tool Description & Documentation - **Goal**: Improve AI understanding of available tools and their usage - **Action Items**: - ✅ Add comprehensive JSDoc comments to all tool registration functions - ✅ Create standardized parameter descriptions across all tools - ✅ Implement consistent "examples" field in all tool descriptions - ✅ Generate automated documentation from tool schemas ### 2. Result Formatting - **Goal**: Standardize tool outputs for optimal AI consumption - **Action Items**: - ✅ Define a consistent JSON output schema for all tools - ✅ Include metadata in responses (timing, version, etc.) - ✅ Format complex data for easier parsing (nested objects, typed arrays) - Add semantic markers to highlight important parts of results ### 3. Tool Composition - **Goal**: Enable multi-step analysis workflows - **Action Items**: - Create a workflow engine to chain tool executions - Implement preset workflows for common code analysis patterns - Add parameterization of workflows for flexibility - Build a workflow visualization component ### 4. Context Sharing - **Goal**: Maintain state across sequential tool invocations - **Action Items**: - ✅ Implement a session management system - Create a caching layer for analysis results - ✅ Add context persistence between related operations - Enable cross-referencing between tool results ### 5. Testing Framework - **Goal**: Ensure reliability of tools when used by AI - **Action Items**: - ✅ Create unit tests for each individual tool - Implement integration tests for tool combinations - ✅ Add performance benchmarks for response times - Build test fixtures for common code patterns ## Technology Choices ### Hybrid Architecture Approach We'll implement a hybrid architecture to optimize for both development speed and performance: 1. **TypeScript for Server Core** - MCP server infrastructure and API layer - Tool registration and orchestration - Integration with MCP SDK - Developer experience tooling - State management (XState) and high-level workflow orchestration - API and service layers 2. **Rust for Performance-Critical Components** - Code parsers and analyzers - Graph traversal algorithms - Memory-intensive operations - High-performance metric calculations - Implemented as standalone binaries or WASM modules - Focus on tools where performance matters most (metrics, parsing, static analysis) 3. **Python for ML/AI Components** - Code classification models - Suggestion generation - Pattern detection - Integration with ML libraries - Leveraging existing ML ecosystems for code understanding ### Implementation Strategy We're adopting a tailored approach for each component in our architecture: 1. **Session Context**: Redis + XState integration - Redis for distributed state persistence - XState for state machine modeling - Session sharing across multiple server instances 2. **Tool Composition**: XState-driven workflow engine - Define reusable workflow templates - State machines for complex tool sequences - Visual workflow debugging and monitoring 3. **Performance-Critical Analysis**: Rust modules with TypeScript wrappers - Native code for performance-intensive operations - Consistent TypeScript interfaces for all tools - WASM packaging for browser compatibility when needed 4. **Knowledge Graph**: Neo4j or specialized graph database - Model code relationships as a connected graph - Efficient traversal and pattern matching - Support for complex relationship queries ### State Management with XState We'll use XState for modeling complex AI agent states and workflows: - **Statechart Modeling**: Formally define agent states and transitions - **Visualization**: Use XState's visualization tools for debugging and documentation - **Context Management**: Leverage XState's built-in context for maintaining state - **Composition**: Create modular, composable state machines for different analysis flows ### AI-Tool Synchronization We'll implement multiple synchronization mechanisms: 1. **Event-Based Architecture** - Pub/sub system for tool completion events - WebSocket support for real-time updates - Event replay for state reconstruction 2. **Caching Layer** - Redis for distributed caching - Versioned cache entries - TTL-based expiration strategy ### Schema Validation with Zod We'll use Zod for comprehensive schema validation: - **Request Validation**: Validate tool inputs with detailed error messages - **Response Validation**: Ensure all tool responses conform to our standard format - **Schema Generation**: Automatically generate documentation from Zod schemas - **Runtime Type Safety**: Leverage TypeScript integration for type inference ### Component Implementation | Component | Primary Technology | Supporting Technologies | | -------------------- | ------------------- | ------------------------- | | Server Core | TypeScript | Express, MCP SDK | | State Management | XState | Redis | | Schema Validation | Zod | TypeScript | | Tool Composition | TypeScript + XState | - | | Performance Analysis | Rust | WASM, TypeScript bindings | | Knowledge Graph | TypeScript | Neo4j, TypeScript | | Code Parsing | Rust | Tree-sitter | | ML Components | Python | TensorFlow/PyTorch | | Testing Framework | Vitest | - | ## Implementation Recommendations ### 1. Standardize Tool Response Format ```typescript // Example standardized response format with Zod schema import { z } from "zod"; // Define the schema with Zod export const ToolResponseSchema = z.object({ data: z.any(), metadata: z.object({ tool: z.string(), version: z.string(), executionTime: z.number(), timestamp: z.string(), }), status: z.object({ success: z.boolean(), code: z.number(), message: z.string().optional(), }), context: z .object({ sessionId: z.string().optional(), relatedResults: z.array(z.string()).optional(), }) .optional(), }); // Type derived from the schema export type ToolResponse<T> = z.infer<typeof ToolResponseSchema> & { data: T; }; // Helper function for creating valid responses export function createToolResponse<T>( data: T, tool: string, success = true, contextData?: { sessionId?: string; relatedResults?: string[] } ): ToolResponse<T> { return { data, metadata: { tool, version: "1.0.0", // Should be dynamically pulled from package executionTime: 0, // Should be calculated timestamp: new Date().toISOString(), }, status: { success, code: success ? 200 : 400, message: success ? undefined : "An error occurred", }, context: contextData, }; } ``` - ✅ Implement this interface across all tool responses - ✅ Create helper functions for generating standard responses - ✅ Add TypeScript types for all response objects - ✅ Use Zod for runtime validation of responses ### 2. Tool Discovery Mechanism - ✅ Create a new MCP tool `list-available-tools` that returns: - All registered tools with descriptions - Parameter schemas and examples - Categories and tags for filtering - Implement a tool capability graph showing relationships - Add search functionality for finding tools by capability ### 3. Session Context Implementation - ✅ Create a session management system with: - Session creation/termination API - State persistence between calls - Timeout and garbage collection - Context sharing between related tools - Implement through Redis or similar for scalability - ✅ Integrate with XState for state management ### 4. Tool Documentation Expansion - For each tool parameter, add: - ✅ Detailed description - ✅ Expected format - ✅ Example values - Common errors - Generate interactive documentation site from schemas - ✅ Auto-generate examples from Zod schemas ### 5. AI-Specific Workflows Create composition tools for common AI tasks: - `analyze-code-quality` - Combines metrics, linting, and best practices - `refactor-suggestion` - Analyzes code and suggests improvements - `dependency-impact` - Analyzes change impact across codebase - `architecture-overview` - Generates high-level system understanding ## Implementation Timeline ### Phase 1: Foundation (Complete) ✅ - ✅ Standardize response formats with Zod schemas - Created consistent success, error, and partial response formats - Implemented Zod schemas for response validation - Added utility functions for generating responses - Ensured TypeScript type inference from schemas - ✅ Implement basic tool documentation improvements - Added JSDoc comments with examples - Created standardized parameter descriptions - Implemented schema-based documentation - Used Zod describe() for rich parameter metadata - ✅ Create initial test framework - Set up Vitest for testing - Implemented mock MCP server - Created shared test utilities - Added proper lifecycle management in tests - ✅ Set up XState for core state management - Implemented tool machine with typed states - Created tool execution service - Added parameter validation - Implemented execution history tracking - ✅ Implement stateful tool support - Added session management - Created state persistence between calls - Modified schemas to include sessionId - Provided helper functions for session interaction - ✅ Contract validation and verification - Implemented API contract verification - Added runtime schema validation - Created integration tests for contract adherence - Documented interface contracts ### Phase 2: Redis Integration and Performance Optimization (Weeks 3-4) - **Redis Session Management** - Implement Redis-backed session store - Add distributed session locking - Create TTL-based session expiration - Implement session migration utilities - **Performance Optimization** - Profile and optimize tool execution - Implement caching for expensive operations - Add batch processing capabilities - Optimize state serialization and deserialization - **Tool Discovery and Metadata** - Create comprehensive tool registry - Add rich metadata to tool definitions - Implement tool search and filtering - Create tool relationship graph - **Initial Rust-based Tools** - Implement code parsing using Tree-sitter - Create code complexity analyzer - Build dependency graph generator - Add performance benchmarking tool - **Enhanced Error Handling** - Create standardized error codes - Add detailed error context - Implement error recovery strategies - Add error logging and aggregation ### Phase 3: Advanced Capabilities and Workflows (Weeks 5-8) - **Workflow Engine with XState** - Create workflow definitions with XState - Implement workflow persistence - Add parameterized workflow templates - Create workflow visualization - **Advanced Analysis Tools** - Implement code quality scoring - Add semantic code understanding - Create refactoring suggestion tools - Build architecture visualization - **Integration Testing Framework** - Create integration test fixtures - Implement end-to-end test scenarios - Add performance regression tests - Create compatibility test suite - **API Gateway and Load Balancing** - Implement API gateway for tool access - Add request rate limiting - Create load balancing for heavy tools - Implement prioritization for critical operations - **Documentation and Developer Experience** - Create interactive documentation site - Add visualizations for tool capabilities - Implement playground for tool experimentation - Create detailed tutorials and examples ## Phase 2 Technical Details ### Redis Session Store Implementation We'll implement a Redis-backed session store with the following capabilities: ```typescript export interface RedisSessionStoreOptions { redisUrl: string; prefix?: string; defaultTtl?: number; // in seconds lockTimeout?: number; // in milliseconds } export class RedisSessionStore implements SessionStore { constructor(options: RedisSessionStoreOptions); // Core SessionStore interface async getSession<T>(sessionId: string): Promise<T | null>; async setSession<T>(sessionId: string, state: T, ttl?: number): Promise<void>; async clearSession(sessionId: string): Promise<void>; async getSessions(): Promise<string[]>; // Extended capabilities async acquireLock( sessionId: string, timeout?: number ): Promise<string | null>; async releaseLock(sessionId: string, lockToken: string): Promise<boolean>; async extendSessionTtl(sessionId: string, ttl: number): Promise<boolean>; async getSessionTtl(sessionId: string): Promise<number | null>; async createSessionIfNotExists<T>( sessionId: string, initialState: T ): Promise<T>; } ``` ### Performance Optimization Strategy For Phase 2, we'll focus on the following performance optimizations: 1. **Caching Layer** - Implement Redis-backed result caching - Add cache invalidation strategies - Create tiered caching (memory + Redis) - Implement cache warming for common operations 2. **State Optimization** - Reduce serialization overhead - Implement incremental state updates - Add lazy loading for context data - Optimize state machine transitions 3. **Batch Processing** - Add support for batch tool execution - Implement parallel execution where applicable - Create queue management for heavy operations - Add prioritization for interactive operations 4. **Memory Management** - Implement streaming for large results - Add memory usage monitoring - Create auto-scaling session cleanup - Optimize object pooling for frequent operations ### Rust-based Tool Integration We'll implement a standard pattern for integrating Rust-based tools: ```typescript import { spawnSync } from "child_process"; import { z } from "zod"; import { createStatefulTool } from "../statefulTool"; const ComplexityAnalysisSchema = z.object({ filePath: z.string().describe("Path to the file to analyze"), options: z .object({ metrics: z .array(z.enum(["cyclomatic", "cognitive", "halstead"])) .default(["cyclomatic"]), threshold: z .number() .optional() .describe("Complexity threshold for highlighting"), }) .optional(), }); export const complexityAnalysisTool = createStatefulTool({ name: "complexityAnalysis", description: "Analyzes code complexity using various metrics", schema: ComplexityAnalysisSchema, handler: async (params, context) => { try { const result = spawnSync("./bin/complexity_analyzer", [ params.filePath, "--format=json", `--metrics=${params.options?.metrics.join(",") || "cyclomatic"}`, params.options?.threshold ? `--threshold=${params.options.threshold}` : "", ]); if (result.status !== 0) { return createErrorResponse({ message: "Complexity analysis failed", code: "COMPLEXITY_ANALYSIS_ERROR", details: result.stderr.toString(), }); } const analysisResult = JSON.parse(result.stdout.toString()); return createSuccessResponse(analysisResult); } catch (error) { return createErrorResponse({ message: "Failed to execute complexity analysis", code: "EXECUTION_ERROR", details: error instanceof Error ? error.message : String(error), }); } }, }); ``` ## Success Metrics We will consider Phase 2 successful when we achieve the following metrics: 1. **Performance** - Response time under 100ms for 95% of tool executions - Support for 5000+ concurrent sessions - Memory usage stable with increasing sessions 2. **Reliability** - 99.9% success rate for tool executions - Zero memory leaks in extended testing - Graceful error handling for all edge cases 3. **Developer Experience** - 90% test coverage for core components - Comprehensive documentation for all tools - Interactive example for each tool 4. **Scalability** - Linear scaling with added resources - Support for distributed deployment - Efficient resource utilization ## Next Steps 1. Review and approve this enhancement plan 2. Prioritize specific action items 3. Assign implementation tasks to team members 4. Set up tracking and reporting for progress ## Tech Debt The following items represent technical debt that should be addressed in future iterations. ### 1. Redis Connectivity Issues - **Issue**: While Redis availability checks pass with simple ping tests, actual session operations fail with connection errors. - **Current State**: `redis-cli ping` returns successfully, but Redis session store operations fail with "Redis client not connected" errors. - **Workaround**: Using memory session store temporarily by setting `preferMemory: true` or `FORCE_MEMORY_SESSION=true`. - **Impact**: - Memory store is fully functional for development and single-instance deployments - Missing Redis persistence for production scenarios with multiple instances - Potential data loss on server restarts with memory store #### Investigation Plan 1. **Redis Configuration Check**: - Review Redis server configuration for authentication requirements - Check connection limits and timeout settings - Verify Redis is not in protected mode that restricts connections 2. **Network/Firewall Issues**: - Confirm Redis port (6379) is not being blocked - Check for any network policies affecting Redis connectivity 3. **Connection Handling Improvements**: - Review Redis client initialization in `RedisSessionStore` - Implement better connection retry logic - Add more detailed connection error logging 4. **Client Library Compatibility**: - Verify compatibility between Redis server version and Node.js client - Check for known issues in the Redis client library #### Resolution Timeline - **Short-term**: Continue using memory store for development - **Medium-term**: Implement improved Redis connection error handling and diagnostics - **Long-term**: Provide additional backend options (e.g., SQLite, file-based) for greater flexibility This tech debt should be prioritized before deploying to production environments that require state persistence across multiple instances or server restarts.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/0xjcf/MCP_CodeAnalysis'

If you have feedback or need assistance with the MCP directory API, please join our Discord server