Skip to main content
Glama

CodeAnalysis MCP Server

by 0xjcf
README.md2.88 kB
# Metadata Management Tools This directory contains tools and resources for implementing and managing metadata standards in your codebase. ## Overview Effective metadata provides context for code and improves discoverability, maintainability, and integration. These tools help establish, validate, and visualize metadata across your codebase. ## Contents - **`metadata.mdc`**: Rule definitions for metadata standards - **`example_config.json`**: Example configuration for metadata standards - **`example_documentation.md`**: Example documentation with metadata - **`TUTORIAL.md`**: Comprehensive guide to implementing metadata standards - **`metadata_extractor.py`**: Tool for extracting and validating metadata - **`metadata_dashboard.py`**: Dashboard for visualizing metadata coverage ## Usage ### Metadata Extractor The extractor analyzes your codebase for metadata in various file types, validating against defined standards: ```bash # Basic usage python metadata_extractor.py --source ./src # With custom configuration python metadata_extractor.py --source ./src --config metadata_config.json --report # Generate report and enable verbose logging python metadata_extractor.py --source ./src --verbose --report ``` ### Metadata Dashboard The dashboard provides interactive visualizations of metadata coverage and quality: ```bash # Start the dashboard with a report python metadata_dashboard.py --report ./metadata-output/metadata_report_20231125_120000.json # Specify port python metadata_dashboard.py --report ./metadata-output/metadata_report_20231125_120000.json --port 8080 ``` ## Integration with MCP These tools can be integrated with MCP (Model-Code-Prompt) to provide automated metadata analysis: 1. Use `/mcp/extract_metadata` endpoint to analyze codebase 2. Use `/mcp/metadata_dashboard` to visualize results Example API usage: ```python import requests # Extract metadata response = requests.post('http://localhost:5000/mcp/extract_metadata', json={ 'source_dir': './src', 'config_path': './metadata_config.json' }) report_path = response.json()['report_path'] # Launch dashboard dashboard_response = requests.post('http://localhost:5000/mcp/metadata_dashboard', json={ 'report_path': report_path, 'port': 8080 }) dashboard_url = dashboard_response.json()['dashboard_url'] ``` ## Requirements - Python 3.7+ - Required packages: - For extractor: `pyyaml`, `colorama` - For dashboard: `dash`, `plotly`, `pandas` Install with: ```bash pip install pyyaml colorama dash plotly pandas ``` ## Best Practices 1. **Define Standards**: Use `example_config.json` as a template to define metadata standards 2. **Automate Validation**: Add metadata checks to CI/CD pipelines 3. **Monitor Coverage**: Use the dashboard to track metadata completeness 4. **Educate Team**: Share the TUTORIAL.md with your team ## License MIT

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/0xjcf/MCP_CodeAnalysis'

If you have feedback or need assistance with the MCP directory API, please join our Discord server