Skip to main content
Glama

Server Details

Comprehensive PostgreSQL documentation and best practices, including ecosystem tools

Status
Healthy
Last Tested
Transport
Streamable HTTP
URL
Repository
timescale/pg-aiguide
GitHub Stars
1,439

Available Tools

2 tools
search_docsTry in Inspector

Search documentation using semantic or keyword search. Supports Tiger Cloud (TimescaleDB) and PostgreSQL.

ParametersJSON Schema
NameRequiredDescriptionDefault
limitYesThe maximum number of matches to return. Default is 10.
queryYesThe search query. For semantic search, use natural language. For keyword search, provide keywords.
sourceYesThe documentation source to search. "tiger" for Tiger Cloud and TimescaleDB, "postgres" for PostgreSQL.
versionYesThe PostgreSQL major version (ignored when searching "tiger"). Recommended to assume the latest version if unknown.
search_typeYesThe type of search to perform. "semantic" uses natural language vector similarity, "keyword" uses BM25 keyword matching.
view_skillTry in Inspector

Retrieve detailed skills for TimescaleDB operations and best practices.

Available Skills

<available_skills> [6 ]{name description}: design-postgres-tables "Use this skill for general PostgreSQL table design.\n\nTrigger when user asks to:\n- Design PostgreSQL tables, schemas, or data models when creating new tables and when modifying existing ones.\n- Choose data types, constraints, or indexes for PostgreSQL\n- Create user tables, order tables, reference tables, or JSONB schemas\n- Understand PostgreSQL best practices for normalization, constraints, or indexing\n- Design update-heavy, upsert-heavy, or OLTP-style tables\n\n\nKeywords: PostgreSQL schema, table design, data types, PRIMARY KEY, FOREIGN KEY, indexes, B-tree, GIN, JSONB, constraints, normalization, identity columns, partitioning, row-level security\n\nComprehensive reference covering data types, indexing strategies, constraints, JSONB patterns, partitioning, and PostgreSQL-specific best practices.\n" find-hypertable-candidates "Use this skill to analyze an existing PostgreSQL database and identify which tables should be converted to Timescale/TimescaleDB hypertables.\n\nTrigger when user asks to:\n- Analyze database tables for hypertable conversion potential\n- Identify time-series or event tables in an existing schema\n- Evaluate if a table would benefit from Timescale/TimescaleDB\n- Audit PostgreSQL tables for migration to Timescale/TimescaleDB/TigerData\n- Score or rank tables for hypertable candidacy\n\n\nKeywords: hypertable candidate, table analysis, migration assessment, Timescale, TimescaleDB, time-series detection, insert-heavy tables, event logs, audit tables\n\nProvides SQL queries to analyze table statistics, index patterns, and query patterns. Includes scoring criteria (8+ points = good candidate) and pattern recognition for IoT, events, transactions, and sequential data.\n" migrate-postgres-tables-to-hypertables "Use this skill to migrate identified PostgreSQL tables to Timescale/TimescaleDB hypertables with optimal configuration and validation.\n\nTrigger when user asks to:\n- Migrate or convert PostgreSQL tables to hypertables\n- Execute hypertable migration with minimal downtime\n- Plan blue-green migration for large tables\n- Validate hypertable migration success\n- Configure compression after migration\n\nPrerequisites: Tables already identified as candidates (use find-hypertable-candidates first if needed)\n\nKeywords: migrate to hypertable, convert table, Timescale, TimescaleDB, blue-green migration, in-place conversion, create_hypertable, migration validation, compression setup\n\nStep-by-step migration planning including: partition column selection, chunk interval calculation, PK/constraint handling, migration execution (in-place vs blue-green), and performance validation queries.\n" pgvector-semantic-search "Use this skill for setting up vector similarity search with pgvector for AI/ML embeddings, RAG applications, or semantic search.\n\nTrigger when user asks to:\n- Store or search vector embeddings in PostgreSQL\n- Set up semantic search, similarity search, or nearest neighbor search\n- Create HNSW or IVFFlat indexes for vectors\n- Implement RAG (Retrieval Augmented Generation) with PostgreSQL\n- Optimize pgvector performance, recall, or memory usage\n- Use binary quantization for large vector datasets\n\nKeywords: pgvector, embeddings, semantic search, vector similarity, HNSW, IVFFlat, halfvec, cosine distance, nearest neighbor, RAG, LLM, AI search\n\nCovers: halfvec storage, HNSW index configuration (m, ef_construction, ef_search), quantization strategies, filtered search, bulk loading, and performance tuning.\n" postgres-hybrid-text-search "Use this skill to implement hybrid search combining BM25 keyword search with semantic vector search using Reciprocal Rank Fusion (RRF).\n\nTrigger when user asks to:\n- Combine keyword and semantic search\n- Implement hybrid search or multi-modal retrieval\n- Use BM25/pg_textsearch with pgvector together\n- Implement RRF (Reciprocal Rank Fusion) for search\n- Build search that handles both exact terms and meaning\n\n\nKeywords: hybrid search, BM25, pg_textsearch, RRF, reciprocal rank fusion, keyword search, full-text search, reranking, cross-encoder\n\nCovers: pg_textsearch BM25 index setup, parallel query patterns, client-side RRF fusion (Python/TypeScript), weighting strategies, and optional ML reranking.\n" setup-timescaledb-hypertables "Use this skill when creating database schemas or tables for Timescale, TimescaleDB, TigerData, or Tiger Cloud, especially for time-series, IoT, metrics, events, or log data. Use this to improve the performance of any insert-heavy table.\n\nTrigger when user asks to:\n- Create or design SQL schemas/tables AND Timescale/TimescaleDB/TigerData/Tiger Cloud is available\n- Set up hypertables, compression, retention policies, or continuous aggregates\n- Configure partition columns, segment_by, order_by, or chunk intervals\n- Optimize time-series database performance or storage\n- Create tables for sensors, metrics, telemetry, events, or transaction logs\n\nKeywords: CREATE TABLE, hypertable, Timescale, TimescaleDB, time-series, IoT, metrics, sensor data, compression policy, continuous aggregates, columnstore, retention policy, chunk interval, segment_by, order_by\n\nStep-by-step instructions for hypertable creation, column selection, compression policies, retention, continuous aggregates, and indexes.\n" </available_skills>

ParametersJSON Schema
NameRequiredDescriptionDefault
pathYesA relative path to a file or directory within the skill to view. If empty, will view the `SKILL.md` file by default. Use `.` to list the root directory of the skill.
skill_nameYesThe name of the skill to browse, or `.` to list all available skills.

FAQ

How do I claim this server?

To claim this server, publish a /.well-known/glama.json file on your server's domain with the following structure:

{ "$schema": "https://glama.ai/mcp/schemas/connector.json", "maintainers": [ { "email": "your-email@example.com" } ] }

The email address must match the email associated with your Glama account. Once verified, the server will appear as claimed by you.

What are the benefits of claiming a server?
  • Control your server's listing on Glama, including description and metadata
  • Receive usage reports showing how your server is being used
  • Get monitoring and health status updates for your server

Discussions

No comments yet. Be the first to start the discussion!

Try in Browser

Your Connectors

Sign in to create a connector for this server.