Skip to main content
Glama

Aman-Amith-Shastry-scientific_computation_mcp

Server Details

This MCP server enables users to perform scientific computations regarding linear algebra and vect…

Status
Healthy
Last Tested
Transport
Streamable HTTP
URL
Repository
Aman-Amith-Shastry/scientific_computation_mcp
GitHub Stars
1
Server Listing
Scientific Computation MCP

Available Tools

26 tools
add_matricesTry in Inspector
Adds two stored tensors element-wise. Args: name_a (str): The name of the first tensor. name_b (str): The name of the second tensor. Returns: np.ndarray: The result of element-wise addition. Raises: ValueError: If the tensor names are not found or shapes are incompatible.
ParametersJSON Schema
NameRequiredDescriptionDefault
name_aYes
name_bYes
change_basisTry in Inspector
Changes the basis of a stored square matrix. Args: name (str): Name of the matrix in the tensor store. new_basis (list[list[float]]): Columns are new basis vectors. Returns: np.ndarray: Representation of the matrix in the new basis. Raises: ValueError: If the matrix name is not found or non-invertible.
ParametersJSON Schema
NameRequiredDescriptionDefault
nameYes
new_basisYes
compute_eigenTry in Inspector
Computes the eigenvalues and right eigenvectors of a stored square matrix. Args: name (str): The name of the tensor to analyze. Returns: dict: A dictionary with keys: - 'eigenvalues': np.ndarray - 'eigenvectors': np.ndarray Raises: ValueError: If the tensor is not found or is not a square matrix.
ParametersJSON Schema
NameRequiredDescriptionDefault
nameYes
create_tensorTry in Inspector
Creates a NumPy array (matrix) with a specified shape and values. Args: shape (list[int]): The shape of the resulting array as a tuple(e.g., (2, 3)). values (list[float]): A flat list of values to populate the array. name (str): The name of the tensor to be stored. Returns: np.ndarray: A NumPy array with the specified shape. Raises: ValueError: If the number of values does not match the product of the shape.
ParametersJSON Schema
NameRequiredDescriptionDefault
nameYes
shapeYesTensor shape as list of integers
valuesYesFlat list of floats to fill the tensor
curlTry in Inspector
Computes the symbolic curl of a vector field, optionally evaluated at a point. Args: f_str (str): A string representing the vector field in list format (e.g., "[x+y, x, 2*z]"). point (list[float], optional): A list of coordinates [x, y, z] to evaluate the curl numerically. Returns: dict: A dictionary with the symbolic curl as a string, and optionally the evaluated vector.
ParametersJSON Schema
NameRequiredDescriptionDefault
f_strYes
pointNo
delete_tensorTry in Inspector
Deletes a tensor from the in-memory tensor store. Args: name (str): The name of the tensor to delete. Raises: ValueError: If the tensor name is not found in the store or if an error occurs during deletion.
ParametersJSON Schema
NameRequiredDescriptionDefault
nameYes
determinantTry in Inspector
Computes the determinant of a stored square matrix. Args: name (str): The name of the matrix. Returns: float: The determinant of the matrix. Raises: ValueError: If the matrix is not found or is not square.
ParametersJSON Schema
NameRequiredDescriptionDefault
nameYes
directional_derivTry in Inspector
Computes symbolic directional derivative of scalar field along a vector direction. Args: f_str (str): Expression like "x*y*z". u (list[float]): Direction vector [vx, vy, vz]. unit (bool): True if u should be normalized before calculating directional derivative. Set to True by default. Returns: str: Symbolic result as string.
ParametersJSON Schema
NameRequiredDescriptionDefault
uYes
unitNo
f_strYes
divergenceTry in Inspector
Computes the symbolic divergence of a vector field, optionally evaluated at a point. Args: f_str (str): A string representing the vector field in list format (e.g., "[x+y, x, 2*z]"). point (list[float], optional): A list of coordinates [x, y, z] to evaluate the divergence numerically. Returns: dict: A dictionary with the symbolic divergence as a string, and optionally the evaluated scalar.
ParametersJSON Schema
NameRequiredDescriptionDefault
f_strYes
pointNo
find_orthonormal_basisTry in Inspector
Finds an orthonormal basis for the column space of a stored matrix using QR decomposition. Args: name (str): The name of the matrix. Returns: list[list[float]]: A list of orthonormal basis vectors. Raises: ValueError: If the matrix is not found or decomposition fails.
ParametersJSON Schema
NameRequiredDescriptionDefault
nameYes
gradientTry in Inspector
Computes the symbolic gradient of a scalar function. Args: f_str (str): A string representing a scalar function (e.g., "x**2 + y*z"). Returns: str: A string representation of the symbolic gradient as a vector.
ParametersJSON Schema
NameRequiredDescriptionDefault
f_strYes
laplacianTry in Inspector
Computes the Laplacian of a scalar or vector field symbolically. Args: f_str (str): Scalar function as "x**2 + y*z" or vector "[Fx, Fy, Fz]". is_vector (bool): Set True to compute vector Laplacian. Returns: str: Symbolic result of the Laplacian—scalar or list of 3 components.
ParametersJSON Schema
NameRequiredDescriptionDefault
f_strYes
is_vectorNo
matrix_inverseTry in Inspector
Computes the inverse of a stored square matrix. Args: name (str): The name of the tensor to invert. Returns: np.ndarray: The inverse of the matrix. Raises: ValueError: If the matrix is not found, is not square, or is singular (non-invertible).
ParametersJSON Schema
NameRequiredDescriptionDefault
nameYes
multiply_matricesTry in Inspector
Performs matrix multiplication between two stored tensors. Args: name_a (str): The name of the first tensor. name_b (str): The name of the second tensor. Returns: np.ndarray: The result of matrix multiplication. Raises: ValueError: If either tensor is not found or their shapes are incompatible.
ParametersJSON Schema
NameRequiredDescriptionDefault
name_aYes
name_bYes
plot_functionTry in Inspector
Plots a 2D or 3D mathematical function from a symbolic expression string. Args: expr_str: string representation of a function in x or x and y, e.g. "x**2" or "sin(sqrt(x**2 + y**2))" xlim: (xmin, xmax) range for x-axis ylim: (ymin, ymax) range for y-axis (used in 2D or 3D) grid: resolution of the plot grid Returns: A rendered Image of the function using Matplotlib. - 2D plot if the expression contains only x - 3D surface plot if the expression contains both x and y
ParametersJSON Schema
NameRequiredDescriptionDefault
gridNo
xlimNo
ylimNo
expr_strYes
plot_vector_fieldTry in Inspector
Plots a 3D vector field from a string "[u(x,y,z), v(x,y,z), w(x,y,z)]" Args: f_str: string representation of 3D field, e.g. "[z, -y, x]". bounds: (xmin, xmax, ymin, ymax, zmin, zmax) n: grid resolution per axis Returns: Displayed Matplotlib 3D quiver plot (no image return needed)
ParametersJSON Schema
NameRequiredDescriptionDefault
nNo
f_strYes
boundsNo
qr_decomposeTry in Inspector
Computes the QR decomposition of a stored matrix. Decomposes the matrix A into A = Q @ R, where Q is an orthogonal matrix and R is an upper triangular matrix. Args: name (str): The name of the matrix to decompose. Returns: dict: A dictionary with keys: - 'q': np.ndarray, the orthogonal matrix Q - 'r': np.ndarray, the upper triangular matrix R Raises: ValueError: If the matrix is not found or decomposition fails.
ParametersJSON Schema
NameRequiredDescriptionDefault
nameYes
rankTry in Inspector
Computes the rank of a stored tensor. Args: name (str): The name of the tensor. Returns: int | list[int]: The rank of the matrix. Raises: ValueError: If the tensor name is not found in the store.
ParametersJSON Schema
NameRequiredDescriptionDefault
nameYes
scale_matrixTry in Inspector
Scales a stored tensor by a scalar factor. Args: name (str): The name of the tensor to scale. scale_factor (float): The scalar value to multiply the tensor by. in_place (bool): If True, updates the stored tensor; otherwise, returns a new scaled tensor. Returns: np.ndarray: The scaled tensor. Raises: ValueError: If the tensor name is not found in the store.
ParametersJSON Schema
NameRequiredDescriptionDefault
nameYes
in_placeNo
scale_factorYes
subtract_matricesTry in Inspector
Adds two stored tensors element-wise. Args: name_a (str): The name of the first tensor. name_b (str): The name of the second tensor. Returns: np.ndarray: The result of element-wise subtraction. Raises: ValueError: If the tensor names are not found or shapes are incompatible.
ParametersJSON Schema
NameRequiredDescriptionDefault
name_aYes
name_bYes
svd_decomposeTry in Inspector
Computes the Singular Value Decomposition (SVD) of a stored matrix. Decomposes the matrix A into A = U @ S @ V^T, where U and V^T are orthogonal matrices, and S is a diagonal matrix of singular values. Args: name (str): The name of the matrix to decompose. Returns: dict: A dictionary with keys: - 'u': np.ndarray, the left singular vectors - 's': np.ndarray, the singular values - 'v_t': np.ndarray, the right singular vectors transposed Raises: ValueError: If the matrix is not found or decomposition fails.
ParametersJSON Schema
NameRequiredDescriptionDefault
nameYes
transposeTry in Inspector
Computes the transpose of a stored tensor. Args: name (str): The name of the tensor to transpose. Returns: np.ndarray: The transposed tensor. Raises: ValueError: If the tensor name is not found in the store.
ParametersJSON Schema
NameRequiredDescriptionDefault
nameYes
vector_cross_productTry in Inspector
Computes the cross product of two stored vectors. Args: name_a (str): Name of the first vector in the tensor store. name_b (str): Name of the second vector in the tensor store. Returns: np.ndarray: Vector result of the cross product. Raises: ValueError: If either vector is not found or if the cross product computation fails.
ParametersJSON Schema
NameRequiredDescriptionDefault
name_aYes
name_bYes
vector_dot_productTry in Inspector
Computes the dot product between two stored vectors. Args: name_a (str): Name of the first vector in the tensor store. name_b (str): Name of the second vector in the tensor store. Returns: np.ndarray: Scalar result of the dot product. Raises: ValueError: If either vector is not found or if the dot product computation fails.
ParametersJSON Schema
NameRequiredDescriptionDefault
name_aYes
name_bYes
vector_projectTry in Inspector
Projects a stored vector onto another vector. Args: name (str): Name of the stored vector to project. new_vector (list[float]): The vector to project onto. Returns: np.ndarray: The projection result vector. Raises: ValueError: If the vector name is not found or projection fails.
ParametersJSON Schema
NameRequiredDescriptionDefault
nameYes
new_vectorYes
view_tensorTry in Inspector
Returns an immutable view of a previously stored NumPy tensor from the in-memory tensor store. Args: name (str): The name of the tensor as stored in the in-store dictionary Returns: dict: The in-store dictionary for tensors
ParametersJSON Schema
NameRequiredDescriptionDefault
nameYes

FAQ

How do I claim this server?

To claim this server, publish a /.well-known/glama.json file on your server's domain with the following structure:

{ "$schema": "https://glama.ai/mcp/schemas/connector.json", "maintainers": [ { "email": "your-email@example.com" } ] }

The email address must match the email associated with your Glama account. Once verified, the server will appear as claimed by you.

What are the benefits of claiming a server?
  • Control your server's listing on Glama, including description and metadata
  • Receive usage reports showing how your server is being used
  • Get monitoring and health status updates for your server
Try in Browser

Your Connectors

Sign in to create a connector for this server.