OpenAI is shockingly good at unminifying code

Written by on .

engineering
openai
ai use cases

  1. Overview
    1. Key Components and Functions

      While browsing the Internet for inspiration, I came across an interesting-looking component.

      Reactive Network Hackathon

      I thought the block with the running ASCII art looked cool, but I couldn't quite figure out how it was implemented, so I started looking at the source code.

      I found the code that looked like it might be doing the job, but it was minified.

      const { floor: ra, abs: KE, min: QE } = Math, O5 = ["reactive.network REACTIVE.NETWORK", "$@B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/|()1{}[]?-_+~<>i!lI;:,^`'. .:â–‘â–’â–“â–ˆ"], G7 = Date.now() % 3 ? O5[1] : O5[0], V5 = G7.length, JE = { fps: 60 }; function eT(e, t, n, r) { const i = t.time * 8e-5, s = QE(t.cols, t.rows), o = t.metrics.aspect * 0.2, l = { x: ((4 * (e.x - t.cols / 6.25)) / s) * o, y: (5 * (e.y - t.rows / 4)) / s }, u = ra(KE(YE(l) - i) * V5 + (ra(e.x / 1) % 2) * 2) % V5; return G7[u]; } const tT = () => { const e = j.useRef(null), [t, n] = j.useState({ height: null, width: null }); return ( j.useEffect(() => { function r() { n({ height: window.innerHeight, width: window.innerWidth }); } if (typeof window < "u") return n({ height: window.innerHeight, width: window.innerWidth }), window.addEventListener("resize", r), () => window.removeEventListener("resize", r); }, []), j.useEffect(() => { const r = e.current; if (!r) return; const i = 12, s = ra(t.width / i) * 1.6, o = ra(t.height / i), l = { aspect: s / o }, u = setInterval(() => { let c = ""; for (let d = 0; d < o; d++) { for (let f = 0; f < s; f++) c += eT({ x: f, y: d }, { cols: s, rows: o, metrics: l, time: Date.now() }); c += ` `; } r.textContent = c; }, 1e3 / JE.fps); return () => clearInterval(u); }, [t]), a.jsx("div", { style: { position: "absolute", top: 0, left: 0, width: "100%", height: "100%" }, children: a.jsx("div", { ref: e, style: { width: "100%", height: "100%", whiteSpace: "pre", overflow: "hidden" } }) }) ); }; function nT(e) { return Math.cos(e.x * e.x - e.y * e.y); } const { floor: ia, abs: rT, min: iT } = Math, D5 = ["reactive.network REACTIVE.NETWORK", "$@B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/|()1{}[]?-_+~<>i!lI;:,^`'. .:â–‘â–’â–“â–ˆ"], X7 = Date.now() % 3 ? D5[1] : D5[0], F5 = X7.length, sT = { fps: 60 }; function oT(e, t, n, r) { const i = t.time * 8e-5, s = iT(t.cols, t.rows), o = t.metrics.aspect * 0.2, l = { x: ((4 * (e.x - t.cols / 6.25)) / s) * o, y: (5 * (e.y - t.rows / 4)) / s }, u = ia(rT(nT(l) - i) * F5 + (ia(e.x / 1) % 2) * 2) % F5; return X7[u]; } const aT = () => { const e = j.useRef(null), [t, n] = j.useState({ height: null, width: null }); return ( j.useEffect(() => { function r() { n({ height: window.innerHeight, width: window.innerWidth }); } if (typeof window < "u") return n({ height: window.innerHeight, width: window.innerWidth }), window.addEventListener("resize", r), () => window.removeEventListener("resize", r); }, []), j.useEffect(() => { const r = e.current; if (!r) return; const i = 12, s = ia(t.width / i) * 1.6, o = ia(t.height / i), l = { aspect: s / o }, u = setInterval(() => { let c = ""; for (let d = 0; d < o; d++) { for (let f = 0; f < s; f++) c += oT({ x: f, y: d }, { cols: s, rows: o, metrics: l, time: Date.now() }); c += ` `; } r.textContent = c; }, 1e3 / sT.fps); return () => clearInterval(u); }, [t]), a.jsx("div", { style: { position: "absolute", top: 0, left: 0, width: "100%", height: "100%" }, children: a.jsx("div", { ref: e, style: { width: "100%", height: "100%", whiteSpace: "pre", overflow: "hidden" } }) }) ); },

      Usually, I would just powerthrough reading the minimized code to understand the implementation (or look for a .map file to restore the original code). However, I realized that I never tried asking ChatGPT to do it for me... So I copied all of the above code and asked ChatGPT to "explain the code". Here is the response:

      The provided code is quite complex, but I'll break it down into a more understandable format, explaining its different parts and their functionalities.

      Overview

      The code defines several functions and components using JavaScript, specifically in the context of a React application. It deals with generating some dynamic text content, presumably ASCII art or some kind of visual effect using characters from a predefined set. Additionally, it includes utility functions for event handling, performance timing, and HTML content conversion.

      Key Components and Functions

      1. Character Set Selection:
        const { floor: ra, abs: KE, min: QE } = Math; const O5 = ["reactive.network REACTIVE.NETWORK", "$@B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/|()1{}[]?-_+~<>i!lI;:,^`'. .:â–‘â–’â–“â–ˆ"]; const G7 = Date.now() % 3 ? O5[1] : O5[0]; const V5 = G7.length;
        • This part of the code imports some common Math functions (floor, abs, and min) and defines two sets of characters, stored in O5.
        • Based on the current time (Date.now() % 3), it selects one of these sets (G7) to use later.
        • The length of the selected character set is stored in V5.
      2. Dynamic Character Selection Function:
        function eT(e, t, n, r) { const i = t.time * 8e-5; const s = QE(t.cols, t.rows); const o = t.metrics.aspect * 0.2; const l = { x: ((4 * (e.x - t.cols / 6.25)) / s) * o, y: (5 * (e.y - t.rows / 4)) / s }; const u = ra(KE(YE(l) - i) * V5 + (ra(e.x / 1) % 2) * 2) % V5; return G7[u]; }
        • The eT function generates a character based on the input position (e.x, e.y) and the current time (t.time).
        • It adjusts the position using some aspect ratio calculations and selects a character from G7 based on a combination of the position and time.
        • The purpose of YE function isn't directly clear from the code, but it seems to be a custom function used in this calculation.
      3. React Component (tT) for Displaying Dynamic Content:
        const tT = () => { const e = j.useRef(null); const [t, n] = j.useState({ height: null, width: null }); j.useEffect(() => { function r() { n({ height: window.innerHeight, width: window.innerWidth }); } if (typeof window < "u") { n({ height: window.innerHeight, width: window.innerWidth }); window.addEventListener("resize", r); return () => window.removeEventListener("resize", r); } }, []); j.useEffect(() => { const r = e.current; if (!r) return; const i = 12; const s = ra(t.width / i) * 1.6; const o = ra(t.height / i); const l = { aspect: s / o }; const u = setInterval(() => { let c = ""; for (let d = 0; d < o; d++) { for (let f = 0; f < s; f++) c += eT({ x: f, y: d }, { cols: s, rows: o, metrics: l, time: Date.now() }); c += ` `; } r.textContent = c; }, 1e3 / JE.fps); return () => clearInterval(u); }, [t]); return a.jsx("div", { style: { position: "absolute", top: 0, left: 0, width: "100%", height: "100%" }, children: a.jsx("div", { ref: e, style: { width: "100%", height: "100%", whiteSpace: "pre", overflow: "hidden" } }) }); };
        • This is a React component that sets up an interval to periodically update the content of a div element (e.current) with dynamically generated characters.
        • It calculates the number of columns (s) and rows (o) based on the window size and then fills the div with characters generated by the eT function.
        • The effect runs at a specified frames per second (JE.fps).

      I followed up asking to "implement equivalent code in TypeScript and make it human readable" and got the following response:

      import React, { useEffect, useRef, useState } from 'react'; const selectedCharacterSet = "$@B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/|()1{}[]?-_+~<>i!lI;:,^`'. .:â–‘â–’â–“â–ˆ"; const characterSetLength = selectedCharacterSet.length; const calculateCharacter = ( x: number, y: number, cols: number, rows: number, aspect: number, time: number, ): string => { const timeFactor = time * 0.000_08; const size = Math.min(cols, rows); const aspectRatio = aspect * 0.2; const position = { x: ((4 * (x - cols / 6.25)) / size) * aspectRatio, y: (5 * (y - rows / 4)) / size, }; const index = Math.floor( Math.abs( Math.cos(position.x * position.x - position.y * position.y) - timeFactor, ) * characterSetLength + (Math.floor(x) % 2) * 2, ) % characterSetLength; return selectedCharacterSet[index]; }; type Size = { height: null | number; width: null | number; }; const AsciiArtGenerator: React.FC = () => { const textRef = useRef<HTMLDivElement>(null); const [size, setSize] = useState<Size>({ height: null, width: null }); useEffect(() => { const handleResize = () => { setSize({ height: window.innerHeight, width: window.innerWidth }); }; // Initial size setting handleResize(); window.addEventListener('resize', handleResize); return () => { window.removeEventListener('resize', handleResize); }; }, []); useEffect(() => { const element = textRef.current; if (!element || !size.width || !size.height) return undefined; const cols = Math.floor(size.width / 12) * 1.6; const rows = Math.floor(size.height / 12); const aspectRatio = cols / rows; const intervalId = setInterval(() => { let content = ''; for (let y = 0; y < rows; y++) { for (let x = 0; x < cols; x++) { content += calculateCharacter( x, y, cols, rows, aspectRatio, Date.now(), ); } content += '\n'; } element.textContent = content; }, 1_000 / 60); // 60 fps return () => { clearInterval(intervalId); }; }, [size]); return ( <div ref={textRef} style={{ height: '100%', overflow: 'hidden', whiteSpace: 'pre', width: '100%', }} /> ); }; export default () => { return <AsciiArtGenerator />; };

      To my surprise, the response is not only good enough, but it is also very readable.

      Here is the above component in action:

      Comparing the outputs, it looks like LLM response overlooked a few implementation details, but it is still a good enough implementation to learn from. Definitely a neat use case I've not considered before!

      Update (2024-08-29): Initially, I thought that the LLM didn't replicate the logic accurately because the output was missing a few characters visible in the original component (e.g., ░▒▓█). However, a user on HN forum pointed out that it was likely a copy-paste error.

      Upon further investigation, I discovered that the original code contains different characters than what I pasted into ChatGPT. This appears to be an encoding issue, as I was able to get the correct characters after downloading the script. After updating the code to use the correct characters, the output is now identical to the original component.

      I apologize, GPT-4, for mistakenly accusing you of making mistakes.

      Written by Frank Fiegel (@punkpeye)