Skip to main content
Glama

Verodat MCP Server

Official
[![MseeP.ai Security Assessment Badge](https://mseep.net/pr/verodat-verodat-mcp-server-badge.png)](https://mseep.ai/app/verodat-verodat-mcp-server) # Verodat MCP Server [![MCP](https://img.shields.io/badge/MCP-Server-blue.svg)](https://github.com/modelcontextprotocol) [![smithery badge](https://smithery.ai/badge/@Verodat/verodat-mcp-server)](https://smithery.ai/server/@Verodat/verodat-mcp-server) ## Overview A Model Context Protocol (MCP) server implementation for [Verodat](https://verodat.io), enabling seamless integration of Verodat's data management capabilities with AI systems like Claude Desktop. ![image](https://github.com/user-attachments/assets/ec26c3e1-077f-46bb-915d-690cfde0833e) # Verodat MCP Server This repository contains a Model Context Protocol (MCP) server implementation for Verodat, allowing AI models to interact with Verodat's data management capabilities through well-defined tools. ## Overview The Verodat MCP Server provides a standardized way for AI models to access and manipulate data in Verodat. It implements the Model Context Protocol specification, providing tools for data consumption, design, and management. ## Tool Categories The server is organized into three main tool categories, each offering a progressive set of capabilities: ### 1. Consume (8 tools) The base category focused on data retrieval operations: * `get-accounts`: Retrieve available accounts * `get-workspaces`: List workspaces within an account * `get-datasets`: List datasets in a workspace * `get-dataset-output`: Retrieve actual data from a dataset * `get-dataset-targetfields`: Retrieve field definitions for a dataset * `get-queries`: Retrieve existing AI queries * `get-ai-context`: Get workspace context and data structure * `execute-ai-query`: Execute AI-powered queries on datasets ### 2. Design (9 tools) Includes all tools from Consume, plus: * `create-dataset`: Create a new dataset with defined schema ### 3. Manage (10 tools) Includes all tools from Design, plus: * `upload-dataset-rows`: Upload data rows to existing datasets ## Prerequisites * Node.js (v18 or higher) * Git * Claude Desktop (for Claude integration) * Verodat account and AI API key ## Installation ### Quick Start #### Installing via Smithery To install Verodat MCP Server for Claude Desktop automatically via Smithery: ``` npx -y @smithery/cli install @Verodat/verodat-mcp-server --client claude ``` #### Manual Installation 1. Clone the repository: ``` git clone https://github.com/Verodat/verodat-mcp-server.git cd verodat-mcp-server ``` 2. Install dependencies and build: ``` npm install npm run build ``` 3. Configure Claude Desktop: Create or modify the config file: * MacOS: `~/Library/Application Support/Claude/claude_desktop_config.json` * Windows: `%APPDATA%/Claude/claude_desktop_config.json` Add the configuration which is mensioned below in configuration: ### Getting Started with Verodat 1. Sign up for a Verodat account at verodat.com 2. Generate an AI API key from your Verodat dashboard 3. Add the API key to your Claude Desktop configuration ## Configuration The server requires configuration for authentication and API endpoints. Create a configuration file for your AI model to use: ```json { "mcpServers": { "verodat-consume": { "command": "node", "args": [ "path/to/verodat-mcp-server/build/src/consume.js" ], "env": { "VERODAT_AI_API_KEY": "your-api-key", "VERODAT_API_BASE_URL": "https://verodat.io/api/v3" } } } } ``` ### Configuration Options You can configure any of the three tool categories by specifying the appropriate JS file one at a time in claude: * **Consume only**: Use `consume.js` (8 tools for data retrieval) * **Design capabilities**: Use `design.js` (9 tools, includes dataset creation) * **Full management**: Use `manage.js` (10 tools, includes data upload) Example for configuring all three categories simultaneously: ```json { "mcpServers": { "verodat-consume": { "command": "node", "args": [ "path/to/verodat-mcp-server/build/src/consume.js" ], "env": { "VERODAT_AI_API_KEY": "your-api-key", "VERODAT_API_BASE_URL": "https://verodat.io/api/v3" } }, "verodat-design": { "command": "node", "args": [ "path/to/verodat-mcp-server/build/src/design.js" ], "env": { "VERODAT_AI_API_KEY": "your-api-key", "VERODAT_API_BASE_URL": "https://verodat.io/api/v3" } }, "verodat-manage": { "command": "node", "args": [ "path/to/verodat-mcp-server/build/src/manage.js" ], "env": { "VERODAT_AI_API_KEY": "your-api-key", "VERODAT_API_BASE_URL": "https://verodat.io/api/v3" } } } } ``` ### Environment Variables * `VERODAT_AI_API_KEY`: Your Verodat API key for authentication * `VERODAT_API_BASE_URL`: The base URL for the Verodat API (defaults to "https://verodat.io/api/v3" if not specified) ## Tool Usage Guide ### Available Commands The server provides the following MCP commands: ``` // Account & Workspace Management get-accounts // List accessible accounts get-workspaces // List workspaces in an account get-queries // Retrieve existing AI queries // Dataset Operations create-dataset // Create a new dataset get-datasets // List datasets in a workspace get-dataset-output // Retrieve dataset records get-dataset-targetfields // Retrieve dataset targetfields upload-dataset-rows // Add new data rows to an existing dataset // AI Operations get-ai-context // Get workspace AI context execute-ai-query // Run AI queries on datasets ``` ### Selecting the Right Tool Category * **For read-only operations**: Use the `consume.js` server configuration * **For creating datasets**: Use the `design.js` server configuration * **For uploading data**: Use the `manage.js` server configuration ## Security Considerations * Authentication is required via API key * Request validation ensures properly formatted data ## Development The codebase is written in TypeScript and organized into: * **Tool handlers**: Implementation of each tool's functionality * **Transport layer**: Handles communication with the AI model * **Validation**: Ensures proper data formats using Zod schemas ### Debugging The MCP server communicates over stdio, which can make debugging challenging. We provide an MCP Inspector tool to help: ``` npm run inspector ``` This will provide a URL to access debugging tools in your browser. ## Contributing We welcome contributions! Please feel free to submit a Pull Request. ## License [LICENSE](LICENSE) file for details ## Support - Documentation: [Verodat Docs](https://verodat.io/docs) - Issues: [GitHub Issues](https://github.com/Verodat/verodat-mcp-server/issues) - Community: [Verodat Community](https://github.com/orgs/Verodat/discussions) ---

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Verodat/verodat-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server