Paperless-NGX MCP Server

# Unichat MCP Server in Python Also available in [TypeScript](https://github.com/amidabuddha/unichat-ts-mcp-server) -- <h4 align="center"> <a href="https://github.com/amidabuddha/unichat-mcp-server/blob/main/LICENSE.md"> <img src="https://img.shields.io/github/license/amidabuddha/unichat-mcp-server" alt="Released under the MIT license." /> </a> <a href="https://smithery.ai/server/unichat-mcp-server"> <img src="https://smithery.ai/badge/unichat-mcp-server" alt="Smithery Server Installations" /> </a> </h4> Send requests to OpenAI, MistralAI, Anthropic, xAI, Google AI or DeepSeek using MCP protocol via tool or predefined prompts. Vendor API key required ### Tools The server implements one tool: - `unichat`: Send a request to unichat - Takes "messages" as required string arguments - Returns a response ### Prompts - `code_review` - Review code for best practices, potential issues, and improvements - Arguments: - `code` (string, required): The code to review" - `document_code` - Generate documentation for code including docstrings and comments - Arguments: - `code` (string, required): The code to comment" - `explain_code` - Explain how a piece of code works in detail - Arguments: - `code` (string, required): The code to explain" - `code_rework` - Apply requested changes to the provided code - Arguments: - `changes` (string, optional): The changes to apply" - `code` (string, required): The code to rework" ## Quickstart ### Install #### Claude Desktop On MacOS: `~/Library/Application\ Support/Claude/claude_desktop_config.json` On Windows: `%APPDATA%/Claude/claude_desktop_config.json` **Supported Models:** > A list of currently supported models to be used as `"SELECTED_UNICHAT_MODEL"` may be found [here](https://github.com/amidabuddha/unichat/blob/main/unichat/models.py). Please make sure to add the relevant vendor API key as `"YOUR_UNICHAT_API_KEY"` **Example:** ```json "env": { "UNICHAT_MODEL": "gpt-4o-mini", "UNICHAT_API_KEY": "YOUR_OPENAI_API_KEY" } ``` Development/Unpublished Servers Configuration ```json "mcpServers": { "unichat-mcp-server": { "command": "uv", "args": [ "--directory", "{{your source code local directory}}/unichat-mcp-server", "run", "unichat-mcp-server" ], "env": { "UNICHAT_MODEL": "SELECTED_UNICHAT_MODEL", "UNICHAT_API_KEY": "YOUR_UNICHAT_API_KEY" } } } ``` Published Servers Configuration ```json "mcpServers": { "unichat-mcp-server": { "command": "uvx", "args": [ "unichat-mcp-server" ], "env": { "UNICHAT_MODEL": "SELECTED_UNICHAT_MODEL", "UNICHAT_API_KEY": "YOUR_UNICHAT_API_KEY" } } } ``` ### Installing via Smithery To install Unichat for Claude Desktop automatically via [Smithery](https://smithery.ai/server/unichat-mcp-server): ```bash npx -y @smithery/cli install unichat-mcp-server --client claude ``` ## Development ### Building and Publishing To prepare the package for distribution: 1. Sync dependencies and update lockfile: ```bash uv sync ``` 2. Build package distributions: ```bash uv build ``` This will create source and wheel distributions in the `dist/` directory. 3. Publish to PyPI: ```bash uv publish --token {{YOUR_PYPI_API_TOKEN}} ``` ### Debugging Since MCP servers run over stdio, debugging can be challenging. For the best debugging experience, we strongly recommend using the [MCP Inspector](https://github.com/modelcontextprotocol/inspector). You can launch the MCP Inspector via [`npm`](https://docs.npmjs.com/downloading-and-installing-node-js-and-npm) with this command: ```bash npx @modelcontextprotocol/inspector uv --directory {{your source code local directory}}/unichat-mcp-server run unichat-mcp-server ``` Upon launching, the Inspector will display a URL that you can access in your browser to begin debugging.