Ragie Model Context Protocol Server
Official
by ragieai

# Ragie Model Context Protocol Server
A Model Context Protocol (MCP) server that provides access to Ragie's knowledge base retrieval capabilities.
## Description
This server implements the Model Context Protocol to enable AI models to retrieve information from a Ragie knowledge base. It provides a single tool called "retrieve" that allows querying the knowledge base for relevant information.
## Prerequisites
- Node.js >= 18
- A Ragie API key
- (Optional) A Ragie partition ID
## Installation
The server requires the following environment variables:
- `RAGIE_API_KEY` (required): Your Ragie API authentication key
- `RAGIE_PARTITION` (optional): The Ragie partition ID to query
The server will start and listen on stdio for MCP protocol messages.
Install and run the server with npx:
```bash
RAGIE_API_KEY=your_api_key RAGIE_PARTITION=optional_partition_id npx @ragieai/mcp-server
```
## Cursor Configuration
To use this MCP server with Cursor:
### Option 1: Create an MCP configuration file
1. Save a file called `mcp.json`
* **For tools specific to a project**, create a `.cursor/mcp.json` file in your project directory. This allows you to define MCP servers that are only available within that specific project.
* **For tools that you want to use across all projects**, create a `~/.cursor/mcp.json` file in your home directory. This makes MCP servers available in all your Cursor workspaces.
* Note that `RAGIE_PARTITION` is optional.
Example `mcp.json`:
```json
{
"mcpServers": {
"ragie": {
"command": "npx",
"args": [
"-y",
"@ragieai/mcp-server"
],
"env": {
"RAGIE_API_KEY": "your_api_key",
"RAGIE_PARTITION": "optional_partition_id"
}
}
}
}
```
### Option 2: Use a shell script
1. Save a file called `ragie-mcp.sh` on your system:
```bash
#!/usr/bin/env bash
export RAGIE_API_KEY="your_api_key"
export RAGIE_PARTITION_ID="optional_partition_id"
npx -y @ragieai/mcp-server
```
2. Give the file execute permissions: `chmod +x ragie-mcp.sh`
3. Add the MCP server script by going to **Settings** -> **Cursor Settings** -> **MCP Servers** in the Cursor UI.
Replace `your_api_key` with your actual Ragie API key and optionally set `RAGIE_PARTITION` if needed.
## Claude Desktop Configuration
To use this MCP server with Claude desktop:
1. Create the MCP config file `claude_desktop_config.json`:
* For MacOS: Use `~/Library/Application Support/Claude/claude_desktop_config.json`
* For Windows: Use `%APPDATA%/Claude/claude_desktop_config.json`
* Note that `RAGIE_PARTITION` is optional.
Example `claude_desktop_config.json`:
```json
{
"mcpServers": {
"ragie": {
"command": "npx",
"args": [
"-y",
"@ragieai/mcp-server"
],
"env": {
"RAGIE_API_KEY": "your_api_key",
"RAGIE_PARTITION": "optional_partition_id"
}
}
}
}
```
Replace `your_api_key` with your actual Ragie API key and optionally set `RAGIE_PARTITION` if needed.
2. Restart Claude desktop for the changes to take effect.
The Ragie retrieval tool will now be available in your Claude desktop conversations.
## Features
### Retrieve Tool
The server provides a `retrieve` tool that can be used to search the knowledge base. It accepts the following parameters:
- `query` (string): The search query to find relevant information
The tool returns:
- An array of content chunks containing matching text from the knowledge base
## Development
This project is written in TypeScript and uses the following main dependencies:
- `@modelcontextprotocol/sdk`: For implementing the MCP server
- `ragie`: For interacting with the Ragie API
- `zod`: For runtime type validation
### Development setup
Running the server in dev mode:
```bash
RAGIE_API_KEY=your_api_key RAGIE_PARTITION=optional_partition_id npm run dev
```
Building the project:
```bash
npm run build
```
## License
MIT License - See LICENSE.txt for details.