Ragie Model Context Protocol Server

Official
![image](https://github.com/user-attachments/assets/75e80f87-f39e-4f10-8c97-bbc848bbed82) # Ragie Model Context Protocol Server A Model Context Protocol (MCP) server that provides access to Ragie's knowledge base retrieval capabilities. ## Description This server implements the Model Context Protocol to enable AI models to retrieve information from a Ragie knowledge base. It provides a single tool called "retrieve" that allows querying the knowledge base for relevant information. ## Prerequisites - Node.js >= 18 - A Ragie API key - (Optional) A Ragie partition ID ## Installation The server requires the following environment variables: - `RAGIE_API_KEY` (required): Your Ragie API authentication key - `RAGIE_PARTITION` (optional): The Ragie partition ID to query The server will start and listen on stdio for MCP protocol messages. Install and run the server with npx: ```bash RAGIE_API_KEY=your_api_key RAGIE_PARTITION=optional_partition_id npx @ragieai/mcp-server ``` ## Cursor Configuration To use this MCP server with Cursor: ### Option 1: Create an MCP configuration file 1. Save a file called `mcp.json` * **For tools specific to a project**, create a `.cursor/mcp.json` file in your project directory. This allows you to define MCP servers that are only available within that specific project. * **For tools that you want to use across all projects**, create a `~/.cursor/mcp.json` file in your home directory. This makes MCP servers available in all your Cursor workspaces. * Note that `RAGIE_PARTITION` is optional. Example `mcp.json`: ```json { "mcpServers": { "ragie": { "command": "npx", "args": [ "-y", "@ragieai/mcp-server" ], "env": { "RAGIE_API_KEY": "your_api_key", "RAGIE_PARTITION": "optional_partition_id" } } } } ``` ### Option 2: Use a shell script 1. Save a file called `ragie-mcp.sh` on your system: ```bash #!/usr/bin/env bash export RAGIE_API_KEY="your_api_key" export RAGIE_PARTITION_ID="optional_partition_id" npx -y @ragieai/mcp-server ``` 2. Give the file execute permissions: `chmod +x ragie-mcp.sh` 3. Add the MCP server script by going to **Settings** -> **Cursor Settings** -> **MCP Servers** in the Cursor UI. Replace `your_api_key` with your actual Ragie API key and optionally set `RAGIE_PARTITION` if needed. ## Claude Desktop Configuration To use this MCP server with Claude desktop: 1. Create the MCP config file `claude_desktop_config.json`: * For MacOS: Use `~/Library/Application Support/Claude/claude_desktop_config.json` * For Windows: Use `%APPDATA%/Claude/claude_desktop_config.json` * Note that `RAGIE_PARTITION` is optional. Example `claude_desktop_config.json`: ```json { "mcpServers": { "ragie": { "command": "npx", "args": [ "-y", "@ragieai/mcp-server" ], "env": { "RAGIE_API_KEY": "your_api_key", "RAGIE_PARTITION": "optional_partition_id" } } } } ``` Replace `your_api_key` with your actual Ragie API key and optionally set `RAGIE_PARTITION` if needed. 2. Restart Claude desktop for the changes to take effect. The Ragie retrieval tool will now be available in your Claude desktop conversations. ## Features ### Retrieve Tool The server provides a `retrieve` tool that can be used to search the knowledge base. It accepts the following parameters: - `query` (string): The search query to find relevant information The tool returns: - An array of content chunks containing matching text from the knowledge base ## Development This project is written in TypeScript and uses the following main dependencies: - `@modelcontextprotocol/sdk`: For implementing the MCP server - `ragie`: For interacting with the Ragie API - `zod`: For runtime type validation ### Development setup Running the server in dev mode: ```bash RAGIE_API_KEY=your_api_key RAGIE_PARTITION=optional_partition_id npm run dev ``` Building the project: ```bash npm run build ``` ## License MIT License - See LICENSE.txt for details.