YouTube MCP Server

# Generated by https://smithery.ai. See: https://smithery.ai/docs/config#dockerfile # Use a Python image with uv pre-installed FROM ghcr.io/astral-sh/uv:python3.11-bookworm-slim AS uv # Install the project into /app WORKDIR /app # Enable bytecode compilation ENV UV_COMPILE_BYTECODE=1 # Copy from the cache instead of linking since it's a mounted volume ENV UV_LINK_MODE=copy # Install the project's dependencies using the lockfile and settings RUN --mount=type=cache,target=/root/.cache/uv --mount=type=bind,source=uv.lock,target=uv.lock --mount=type=bind,source=pyproject.toml,target=pyproject.toml uv sync --frozen --no-install-project --no-dev --no-editable # Then, add the rest of the project source code and install it # Installing separately from its dependencies allows optimal layer caching ADD . /app RUN --mount=type=cache,target=/root/.cache/uv uv sync --frozen --no-dev --no-editable FROM python:3.11-slim-bookworm WORKDIR /app COPY --from=uv /root/.local /root/.local COPY --from=uv --chown=app:app /app/.venv /app/.venv # Place executables in the environment at the front of the path ENV PATH="/app/.venv/bin:$PATH" # when running the container, add --db-path and a bind mount to the host's db file ENTRYPOINT ["uv", "tool", "run", "web-browser-mcp-server"]