Moondream MCP Server
by NightTrek
# Moondream MCP Server Notes
## System Overview
### Core Components
1. MCP Server Layer (TypeScript)
- Handles MCP protocol communication
- Manages tool interfaces
- Processes requests/responses
2. Python Backend
- Moondream model server
- Image analysis processing
- HTTP API endpoints (port 3475)
### Key Dependencies
- UV Package Manager
- Node.js (v18+)
- Python 3.8+
- Moondream Python package
- MCP SDK
## Installation Requirements
### System Requirements
1. Node.js v18 or higher
2. Python 3.8+
3. UV package manager
4. Sufficient disk space (~1GB for model and environments)
### Environment Setup
1. UV installation (automatic)
2. Python virtual environment (managed by UV)
3. Moondream package installation
4. Model download (~500MB)
## Integration Points
### Claude Desktop
Configuration in `~/Library/Application Support/Claude/claude_desktop_config.json`:
```json
{
"mcpServers": {
"moondream": {
"command": "node",
"args": ["/path/to/moondream-server/build/index.js"]
}
}
}
```
### Cline
Configuration in `~/Library/Application Support/Code/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json`:
```json
{
"mcpServers": {
"moondream": {
"command": "node",
"args": ["/path/to/moondream-server/build/index.js"]
}
}
}
```
## Available Tools
### analyze_image
- Purpose: Image analysis using Moondream model
- Capabilities:
1. Image captioning
2. Object detection
3. Visual question answering
- Input Schema:
```typescript
{
image_path: string, // Path to image file
prompt: string // Analysis command
}
```
## Technical Implementation
### Server Architecture
1. Main Server (index.ts)
- MCP protocol handling
- Tool registration
- Request routing
2. Python Setup (python-setup.ts)
- UV installation
- Virtual environment management
- Model download and setup
- Moondream server process management
### Model Details
- Name: moondream-0_5b-int4.mf.gz
- Size: ~500MB
- Type: 8-bit quantized
- Source: Hugging Face
- Location: models/ directory
### API Endpoints
- Base URL: http://127.0.0.1:3475
- Endpoints:
1. /caption - Image captioning
2. /detect - Object detection
3. /query - Visual Q&A
## Maintenance Notes
### Common Issues
1. Model Download
- Check network connectivity
- Verify Hugging Face accessibility
- Ensure sufficient disk space
2. Server Startup
- Port 3475 conflicts
- Python environment issues
- Model file accessibility
3. UV Setup
- Installation verification
- Path configuration
- Permission issues
### Performance Considerations
1. Model Loading
- First request may be slower
- Subsequent requests benefit from caching
- Memory usage peaks during analysis
2. Concurrent Requests
- Server handles multiple requests
- Resource intensive operations
- Monitor memory usage
## Future Improvements
### Potential Enhancements
1. Model Options
- Support for larger models
- Alternative model architectures
- Custom model integration
2. Performance
- Response time optimization
- Memory usage improvements
- Caching strategies
3. Features
- Batch processing
- Image preprocessing options
- Additional analysis modes
### Development Tasks
- [ ] Add support for larger models
- [ ] Implement batch processing
- [ ] Optimize memory usage
- [ ] Add error recovery mechanisms
- [ ] Improve documentation