Skip to main content
Glama

Document Automation MCP Server

README.md25 kB
# Document Automation - Comprehensive Documentation A powerful Python-based documentation automation tool that analyzes codebases and generates comprehensive documentation with multiple export formats. ## Table of Contents - [Overview](#overview) - [Features](#features) - [Architecture](#architecture) - [Prerequisites](#prerequisites) - [Installation](#installation) - [Configuration](#configuration) - [Usage](#usage) - [API Reference](#api-reference) - [Project Structure](#project-structure) - [How It Works](#how-it-works) - [Deployment](#deployment) - [Contributing](#contributing) - [Troubleshooting](#troubleshooting) - [License](#license) ## Overview Document-Automation is a powerful Python-based tool designed to automatically analyze codebases and generate comprehensive documentation. It provides intelligent codebase analysis, multiple output formats, and professional-grade documentation generation capabilities. ### Why Use Document-Automation? - **Comprehensive Analysis**: Deep codebase inspection with AST parsing - **Multiple Formats**: Generate HTML, PDF, Markdown, and interactive documentation - **Professional Quality**: Enterprise-ready documentation with modern themes - **Automated Workflows**: Reduce manual documentation overhead - **Framework Detection**: Intelligent technology stack analysis - **Database Integration**: Schema analysis and ER diagram generation ## Features ### Core Capabilities - **Codebase Analysis**: Complete project structure analysis with metrics - **AST Parsing**: Deep code analysis for Python and JavaScript - **Framework Detection**: Automatic technology stack identification - **Database Schema Analysis**: SQL schema extraction and visualization - **Security Analysis**: Code security assessment and recommendations - **Interactive Documentation**: Modern, searchable documentation interfaces ### Output Formats - Interactive HTML with search and navigation - Professional PDF reports - Markdown documentation - Confluence-ready content - JSON data exports - LaTeX and academic formats ### Advanced Features - **Mermaid Diagrams**: Architecture and database relationship diagrams - **Multi-language Support**: Internationalization capabilities - **Custom Themes**: Modern, dark, corporate, and minimal themes - **Accessibility Compliance**: WCAG 2.1 AA compliant output - **Responsive Design**: Mobile-friendly documentation - **Background Processing**: Handle large codebases efficiently ## Architecture Document Automation is an advanced documentation generation tool designed to analyze codebases and automatically create comprehensive, professional documentation. Built with Python and leveraging modern technologies like FastAPI, AST parsing, and multiple export formats, this tool streamlines the documentation process for developers and teams. ### Why Use Document Automation? - **Automated Analysis**: Automatically analyzes your codebase structure, dependencies, and architecture - **Multiple Formats**: Export to HTML, PDF, Markdown, DOCX, and more - **Interactive Documentation**: Generate searchable, navigable documentation - **Framework Detection**: Automatically detects and documents frameworks and technologies - **Database Schema Analysis**: Analyzes and documents database structures - **Security Analysis**: Identifies potential security issues - **Mermaid Diagrams**: Auto-generates architecture and flow diagrams ## Features ### Core Features - 🔍 **Comprehensive Codebase Analysis**: AST parsing, dependency analysis, and framework detection - 📊 **Multiple Export Formats**: HTML, PDF, Markdown, DOCX, Confluence, Notion - 🎨 **Professional Themes**: Modern, minimal, dark, corporate, and custom themes - 🔒 **Security Analysis**: Built-in security scanning and vulnerability detection - 📈 **Interactive Diagrams**: Auto-generated Mermaid diagrams for architecture visualization - 🌐 **Multi-language Support**: Supports Python, JavaScript, and more - 📱 **Responsive Design**: Mobile-friendly documentation output - 🔍 **Search Functionality**: Full-text search in generated documentation - ♿ **Accessibility Compliance**: WCAG 2.1 AA compliant outputs ### Advanced Features - **Concurrent Processing**: Multi-threaded analysis for large codebases - **Pagination Support**: Handle large repositories with smart pagination - **Background Processing**: Async processing for improved performance - **Custom CSS Support**: Inject custom styles for branding - **API Endpoint Discovery**: Automatically documents REST APIs - **Database Schema Visualization**: ER diagrams and relationship mapping ### System Components #### 1. Analyzers Module (`src/analyzers/`) - **BaseAnalyzer**: Core analysis functionality - **CodebaseAnalyzer**: Project structure and file analysis - **DatabaseAnalyzer**: SQL schema and relationship analysis - **FrameworkDetector**: Technology stack identification #### 2. Parsers Module (`src/parsers/`) - **ASTAnalyzer**: Abstract syntax tree parsing - **PythonParser**: Python-specific code analysis - **JavaScriptParser**: JavaScript code analysis - **ParserFactory**: Language-agnostic parser selection ### System Architecture ```mermaid flowchart TB title["Document-Automation Architecture"] subgraph "Input Layer" A[Code Repository] B[Configuration Files] C[Custom Templates] end subgraph "Analysis Layer" D[Codebase Analyzer] E[AST Parser] F[Framework Detector] G[Database Analyzer] H[Security Scanner] end subgraph "Processing Layer" I[Concurrent Processor] J[Background Tasks] K[Token Estimator] L[Pagination Manager] end subgraph "Generation Layer" M[Documentation Generator] N[Diagram Generator] O[Template Engine] P[Format Exporter] end subgraph "Output Layer" Q[HTML Documentation] R[PDF Reports] S[Markdown Files] T[Interactive Docs] end A --> D B --> D C --> O D --> E D --> F D --> G D --> H E --> I F --> I G --> I H --> I I --> J I --> K I --> L J --> M K --> M L --> M M --> N M --> O M --> P N --> Q O --> Q P --> R P --> S P --> T ``` ### Component Overview #### Analyzers - **BaseAnalyzer**: Core analysis functionality - **CodebaseAnalyzer**: Repository structure analysis - **DatabaseAnalyzer**: Database schema analysis - **FrameworkDetector**: Technology stack detection #### Parsers - **ASTAnalyzer**: Abstract Syntax Tree parsing - **PythonParser**: Python-specific parsing - **JavaScriptParser**: JavaScript-specific parsing - **BaseParser**: Generic parsing functionality #### Generators - **DocumentationGenerator**: Core documentation generation - **InteractiveDocGenerator**: Interactive HTML generation - **ProfessionalDocGenerator**: Professional format generation #### Export & Processing - **FormatExporter**: Multi-format export capability - **ConcurrentAnalyzer**: Parallel processing - **BackgroundProcessor**: Async task management ## Prerequisites ### System Requirements - Python 3.8 or higher - Git (for repository analysis) - 4GB RAM minimum (8GB recommended for large projects) - 1GB free disk space ### Required Dependencies ```python # Core Dependencies fastapi>=0.104.1 uvicorn[standard]>=0.24.0 pydantic>=2.5.0 starlette>=0.27.0 # Analysis & Parsing tree-sitter>=0.20.4 tree-sitter-python>=0.20.4 tree-sitter-javascript>=0.20.3 gitpython>=3.1.40 # Documentation Generation mkdocs>=1.5.3 markdown-it-py>=3.0.0 jinja2>=3.1.2 markdown>=3.5.1 # Export Formats reportlab>=4.0.7 weasyprint>=60.2 python-docx>=1.1.0 openpyxl>=3.1.2 # Visualization matplotlib>=3.8.2 plotly>=5.17.0 mermaid-py>=0.3.0 # Processing pandas>=2.1.4 numpy>=1.24.4 sqlalchemy>=2.0.23 celery>=5.3.4 redis>=5.0.1 ``` ### Required Dependencies ```bash # Core dependencies fastapi>=0.68.0 uvicorn[standard]>=0.15.0 pydantic>=1.8.0 sqlalchemy>=1.4.0 requests>=2.25.0 # Analysis libraries tree-sitter>=0.20.0 tree-sitter-python>=0.20.0 tree-sitter-javascript>=0.20.0 gitpython>=3.1.0 # Documentation generation jinja2>=3.0.0 markdown>=3.3.0 weasyprint>=54.0 matplotlib>=3.3.0 plotly>=5.0.0 mermaid-py>=0.3.0 # Optional dependencies redis>=4.0.0 # For caching celery>=5.2.0 # For background processing ``` ## Installation ### Method 1: pip Installation (Recommended) ```bash # Install from PyPI (when available) pip install document-automation # Or install from source git clone https://github.com/vedantparmar12/Document-Automation.git cd Document-Automation pip install -r requirements.txt ``` ### Method 2: Docker Installation ```bash # Pull the Docker image docker pull vedantparmar12/document-automation:latest # Run with volume mounting docker run -v /path/to/your/project:/app/input \ -v /path/to/output:/app/output \ vedantparmar12/document-automation:latest ``` ### Method 3: Development Setup ```bash # Clone repository git clone https://github.com/vedantparmar12/Document-Automation.git cd Document-Automation # Create virtual environment python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate # Install dependencies pip install -r requirements.txt # Run development server python run_server.py ``` ## Configuration ### Environment Variables Create a `.env` file in the project root: ```env # Server Configuration HOST=0.0.0.0 PORT=8000 DEBUG=True WORKERS=4 # Processing Configuration MAX_CONCURRENT_ANALYSES=3 DEFAULT_TIMEOUT=300 MAX_FILE_SIZE=10MB # Export Configuration DEFAULT_THEME=modern DEFAULT_FORMAT=interactive ENABLE_PDF_EXPORT=True ENABLE_SEARCH=True # Security Configuration VALIDATE_PATHS=True SANDBOX_MODE=False MAX_ANALYSIS_TIME=3600 # External Services (Optional) REDIS_URL=redis://localhost:6379 DATABASE_URL=sqlite:///./analysis.db ``` ### Configuration File Create `config.yaml`: ```yaml analysis: max_files: 1000 include_patterns: - "*.py" - "*.js" - "*.ts" - "*.jsx" - "*.tsx" - "*.sql" exclude_patterns: - "node_modules" - "__pycache__" - ".git" - "*.pyc" - "dist" - "build" documentation: title: "Auto-Generated Documentation" author: "Document Automation" version: "1.0.0" theme: "modern" include_toc: true include_search: true include_diagrams: true export: formats: - html - pdf - markdown output_dir: "./docs" responsive_design: true accessibility_compliance: true security: validate_inputs: true sanitize_paths: true max_analysis_depth: 10 allowed_extensions: - .py - .js - .ts - .md - .sql ``` ## Usage ### Command Line Interface ```bash # Basic usage python -m document_automation analyze /path/to/project # With custom output format python -m document_automation analyze /path/to/project --format html --theme modern # Multiple formats python -m document_automation analyze /path/to/project --formats html,pdf,markdown # With custom configuration python -m document_automation analyze /path/to/project --config config.yaml # GitHub repository analysis python -m document_automation analyze-repo https://github.com/user/repo # Server mode python -m document_automation serve --host 0.0.0.0 --port 8000 ``` ### Web Server ```bash # Start the web server python run_server.py # Or using uvicorn directly uvicorn src.server:app --host 0.0.0.0 --port 8000 --reload ``` ### Python API Usage ```python from src.analyzers import CodebaseAnalyzer from src.generators import DocumentationGenerator from src.export import FormatExporter # Initialize components analyzer = CodebaseAnalyzer() generator = DocumentationGenerator() exporter = FormatExporter() # Analyze codebase analysis_result = analyzer.analyze_repository("/path/to/project") # Generate documentation documentation = generator.generate( analysis_result, theme="modern", include_diagrams=True ) # Export to multiple formats exporter.export_multiple( documentation, formats=["html", "pdf", "markdown"], output_dir="./docs" ) ``` ### REST API Usage ```python import requests # Start analysis response = requests.post("http://localhost:8000/analyze", json={ "path": "/path/to/project", "include_ast_analysis": True, "include_security_analysis": True, "formats": ["html", "pdf"] }) analysis_id = response.json()["analysis_id"] # Check status status = requests.get(f"http://localhost:8000/status/{analysis_id}") # Download results docs = requests.get(f"http://localhost:8000/download/{analysis_id}") ``` ## API Reference ### Core Classes #### CodebaseAnalyzer ```python class CodebaseAnalyzer: """Main analyzer for codebase analysis.""" def analyze_repository(self, path: str, **options) -> AnalysisResult: """Analyze a repository and return structured results.""" def analyze_files(self, files: List[str], **options) -> AnalysisResult: """Analyze specific files.""" def get_metrics(self, analysis: AnalysisResult) -> Dict: """Extract metrics from analysis results.""" ``` #### DocumentationGenerator ```python class DocumentationGenerator: """Generate documentation from analysis results.""" def generate(self, analysis: AnalysisResult, **options) -> Documentation: """Generate documentation in specified format.""" def generate_interactive(self, analysis: AnalysisResult) -> str: """Generate interactive HTML documentation.""" def generate_api_docs(self, analysis: AnalysisResult) -> str: """Generate API documentation.""" ``` #### FormatExporter ```python class FormatExporter: """Export documentation to various formats.""" def export_html(self, content: str, output_path: str) -> bool: """Export to HTML format.""" def export_pdf(self, content: str, output_path: str) -> bool: """Export to PDF format.""" def export_multiple(self, content: str, formats: List[str], output_dir: str) -> Dict: """Export to multiple formats simultaneously.""" ``` ### REST API Endpoints #### Analysis Endpoints ```http POST /analyze Content-Type: application/json { "path": "/path/to/project", "source_type": "local", "include_ast_analysis": true, "include_security_analysis": true, "include_diagrams": true, "formats": ["html", "pdf"], "theme": "modern" } ``` ```http GET /status/{analysis_id} Response: { "status": "completed", "progress": 100, "results_available": true, "error": null } ``` ```http GET /download/{analysis_id} Response: Binary content or redirect to download URL ``` #### Repository Analysis ```http POST /analyze-repo Content-Type: application/json { "repo_url": "https://github.com/user/repo", "branch": "main", "include_ast_analysis": true, "formats": ["html", "markdown"] } ``` ## Project Structure ``` Document-Automation/ │ ├── src/ # Source code │ ├── __init__.py │ ├── server.py # FastAPI server │ ├── schemas.py # Pydantic models │ │ │ ├── analyzers/ # Analysis components │ │ ├── __init__.py │ │ ├── base_analyzer.py # Base analysis class │ │ ├── codebase_analyzer.py # Main codebase analyzer │ │ ├── database_analyzer.py # Database schema analysis │ │ └── framework_detector.py # Framework detection │ │ │ ├── parsers/ # Code parsers │ │ ├── __init__.py │ │ ├── base_parser.py # Base parser class │ │ ├── ast_analyzer.py # AST analysis │ │ ├── python_parser.py # Python-specific parsing │ │ ├── javascript_parser.py # JavaScript parsing │ │ └── parser_factory.py # Parser factory │ │ │ ├── generators/ # Documentation generators │ │ ├── __init__.py │ │ ├── documentation_generator.py │ │ ├── interactive_doc_generator.py │ │ └── professional_doc_generator.py │ │ │ ├── export/ # Export functionality │ │ └── format_exporter.py │ │ │ ├── diagrams/ # Diagram generation │ │ ├── __init__.py │ │ ├── mermaid_generator.py │ │ ├── architecture_diagrams.py │ │ └── database_diagrams.py │ │ │ ├── processing/ # Processing utilities │ │ ├── __init__.py │ │ ├── concurrent_analyzer.py │ │ └── background_processor.py │ │ │ ├── pagination/ # Pagination handling │ │ ├── __init__.py │ │ ├── chunker.py │ │ ├── strategies.py │ │ ├── context.py │ │ └── token_estimator.py │ │ │ ├── security/ # Security validation │ │ ├── __init__.py │ │ └── validation.py │ │ │ └── tools/ # Consolidated tools │ ├── __init__.py │ └── consolidated_documentation_tools.py │ ├── docs/ # Generated documentation ├── tests/ # Test files ├── templates/ # Documentation templates ├── static/ # Static assets ├── requirements.txt # Dependencies ├── pyproject.toml # Project configuration ├── package.json # Node.js dependencies (if any) ├── tsconfig.json # TypeScript configuration ├── wrangler.toml # Cloudflare Workers config ├── run_server.py # Server runner └── README.md # Project README ``` ## How It Works ### Analysis Process 1. **Repository Scanning**: Recursively scans the target directory 2. **File Type Detection**: Identifies file types and programming languages 3. **AST Parsing**: Parses source code into Abstract Syntax Trees 4. **Framework Detection**: Identifies frameworks and libraries used 5. **Dependency Analysis**: Maps dependencies and their relationships 6. **Security Scanning**: Identifies potential security issues 7. **Metric Calculation**: Computes code metrics and complexity scores ### Documentation Generation 1. **Template Selection**: Chooses appropriate template based on theme 2. **Content Assembly**: Assembles analyzed data into documentation structure 3. **Diagram Generation**: Creates Mermaid diagrams for visualization 4. **Format Rendering**: Renders content in requested formats 5. **Export Processing**: Optimizes and exports final documentation ### Supported Analysis Types - **Static Code Analysis**: Function/class/variable analysis - **Dependency Mapping**: Import/export relationships - **Architecture Analysis**: High-level system architecture - **Database Schema**: Table relationships and structures - **API Discovery**: REST endpoint identification - **Security Scanning**: Common vulnerability detection ## Deployment ### Docker Deployment ```dockerfile FROM python:3.11-slim WORKDIR /app COPY requirements.txt . RUN pip install --no-cache-dir -r requirements.txt COPY . . EXPOSE 8000 CMD ["uvicorn", "src.server:app", "--host", "0.0.0.0", "--port", "8000"] ``` ```bash # Build and run docker build -t document-automation . docker run -p 8000:8000 document-automation ``` ### Cloud Deployment #### AWS EC2 ```bash # Install on EC2 instance sudo yum update -y sudo yum install python3 python3-pip git -y # Clone and setup git clone https://github.com/vedantparmar12/Document-Automation.git cd Document-Automation pip3 install -r requirements.txt # Run with systemd sudo nano /etc/systemd/system/document-automation.service sudo systemctl enable document-automation sudo systemctl start document-automation ``` #### Heroku ```bash # Heroku deployment heroku create your-app-name heroku buildpacks:set heroku/python git push heroku main ``` #### Cloudflare Workers The project includes `wrangler.toml` for Cloudflare Workers deployment: ```bash npm install -g @cloudflare/wrangler wrangler publish ``` ## Contributing We welcome contributions! Here's how to get started: ### Development Setup ```bash # Fork and clone the repository git clone https://github.com/your-username/Document-Automation.git cd Document-Automation # Create feature branch git checkout -b feature/your-feature-name # Setup development environment python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate pip install -r requirements-dev.txt # Install pre-commit hooks pre-commit install ``` ### Running Tests ```bash # Run all tests python -m pytest # Run with coverage python -m pytest --cov=src # Run specific test file python -m pytest tests/test_analyzer.py # Run with verbose output python -m pytest -v ``` ### Code Style We use: - **Black** for code formatting - **isort** for import sorting - **flake8** for linting - **mypy** for type checking ```bash # Format code black src/ tests/ isort src/ tests/ # Check linting flake8 src/ tests/ # Type checking mypy src/ ``` ### Contribution Guidelines 1. **Fork the repository** and create a feature branch 2. **Write tests** for new functionality 3. **Follow code style** guidelines 4. **Update documentation** as needed 5. **Submit a pull request** with clear description ### Reporting Issues When reporting issues, please include: - Python version and OS - Error messages and stack traces - Minimal reproducible example - Expected vs actual behavior ## Troubleshooting ### Common Issues #### Analysis Fails with Large Repositories ```bash # Increase memory limits export PYTHONHASHSEED=0 export PYTHONMAXMEMORY=8GB # Use pagination python -m document_automation analyze /path/to/project --max-files 500 ``` #### PDF Export Issues ```bash # Install additional dependencies # On Ubuntu/Debian: sudo apt-get install wkhtmltopdf # On macOS: brew install wkhtmltopdf # On Windows: Download from https://wkhtmltopdf.org/ ``` #### Permission Errors ```bash # Ensure proper permissions chmod +x run_server.py # Run with proper user permissions sudo chown -R $(whoami):$(whoami) ./docs/ ``` ### Performance Optimization #### For Large Codebases ```python # Optimize analysis settings analyzer = CodebaseAnalyzer( max_concurrent_files=10, enable_caching=True, skip_binary_files=True, max_file_size="10MB" ) ``` #### Memory Usage ```python # Reduce memory footprint import gc # Enable garbage collection gc.enable() # Use streaming for large files analyzer.enable_streaming = True analyzer.chunk_size = 1024 ``` ### Debug Mode ```bash # Enable debug logging export DEBUG=True export LOG_LEVEL=DEBUG # Run with verbose output python -m document_automation analyze /path/to/project --verbose --debug ``` ## License This project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details. ``` MIT License Copyright (c) 2024 Vedant Parmar Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ``` --- ## Quick Start Summary 1. **Clone the repository**: `git clone https://github.com/vedantparmar12/Document-Automation.git` 2. **Install dependencies**: `pip install -r requirements.txt` 3. **Start the server**: `python run_server.py` 4. **Access the API**: Navigate to `http://localhost:8000` 5. **Analyze your project**: Use the web interface or REST API 6. **Download documentation**: Get your generated docs in multiple formats For more detailed information, please refer to the specific sections above or check the project's GitHub repository. --- *Generated by Document Automation v1.0.0 - Automated documentation generation tool*

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/vedantparmar12/Document-Automation'

If you have feedback or need assistance with the MCP directory API, please join our Discord server