Skip to main content
Glama
create-dataset-item.tsβ€’1.4 kB
import { z } from 'zod'; import { LangfuseAnalyticsClient } from '../langfuse-client.js'; export const createDatasetItemSchema = z.object({ datasetName: z.string().min(1).describe('Name of the dataset to add the item to (required)'), input: z.any().optional().describe('Input data for the dataset item'), expectedOutput: z.any().optional().describe('Expected output for the dataset item'), metadata: z.any().optional().describe('Optional metadata object for the dataset item'), sourceTraceId: z.string().optional().describe('Optional trace ID this dataset item is derived from'), sourceObservationId: z.string().optional().describe('Optional observation ID this dataset item is derived from'), status: z.enum(['ACTIVE', 'ARCHIVED']).optional().describe('Status of the dataset item (default: ACTIVE)'), }); export type CreateDatasetItemArgs = z.infer<typeof createDatasetItemSchema>; export async function createDatasetItem( client: LangfuseAnalyticsClient, args: CreateDatasetItemArgs ) { try { const data = await client.createDatasetItem(args); return { content: [{ type: 'text' as const, text: JSON.stringify(data, null, 2) }], }; } catch (error) { const errorMessage = error instanceof Error ? error.message : String(error); return { content: [{ type: 'text' as const, text: `Error: ${errorMessage}` }], isError: true, }; } }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/therealsachin/langfuse-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server