We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/sparesparrow/mcp-prompts'
If you have feedback or need assistance with the MCP directory API, please join our Discord server
QUICK_START.md•1.55 kB
# Quick Start Guide
## Using the Skill Scripts
### Quick Reference Paths
**Claude Desktop:**
```bash
SKILL_DIR="/home/sparrow/.local/share/claude-skills/dev-intelligence-orchestrator/scripts"
```
**Cursor:**
```bash
SKILL_DIR="/home/sparrow/.cursor/skills/dev-intelligence-orchestrator/scripts"
```
### Common Usage Examples
#### 1. Detect Project Type
```bash
$SKILL_DIR/detect_project_type.sh /path/to/project
```
#### 2. Analyze C++ Code
```bash
# First run - captures learning
$SKILL_DIR/analyze_cpp.sh src/main.cpp memory .
# Second run - uses learned config
$SKILL_DIR/analyze_cpp.sh src/main.cpp memory .
```
#### 3. Analyze Python Code
```bash
$SKILL_DIR/analyze_python.sh src/utils.py general .
```
#### 4. Parse Build Errors
```bash
$SKILL_DIR/parse_build_errors.py build.log esp32 platformio
```
#### 5. Run Tests
```bash
$SKILL_DIR/run_tests.sh . tests/ true
```
### Integration with Claude/Cursor
The scripts can be called directly from Claude or Cursor:
```
Use the dev-intelligence-orchestrator skill to analyze the code in src/main.cpp
```
The AI will automatically use the appropriate script from the deployed location.
### Learning Loop Status
The scripts will automatically:
- 🔍 Query mcp-prompts for learned configurations
- ✓ Use learned configs when available
- 💡 Capture successful configurations
- 📈 Increase confidence with validation
### Prerequisites
- mcp-prompts server running (optional, graceful degradation)
- Analysis tools: pylint, cppcheck, pytest (as needed)
- jq for JSON parsing