Skip to main content
Glama

MCP Test Server

by small-tou
get-todos.js1.72 kB
#!/usr/bin/env node const { Client } = require("@modelcontextprotocol/sdk/client/index.js"); const { StdioClientTransport } = require("@modelcontextprotocol/sdk/client/stdio.js"); async function getTodosFromMcp() { console.log("🔗 连接到 MCP 服务器获取待办事项...\n"); // 创建客户端传输 const transport = new StdioClientTransport({ command: "node", args: ["dist/index.js"] }); // 创建客户端 const client = new Client({ name: "todos-client", version: "1.0.0" }); try { // 连接到服务器 await client.connect(transport); console.log("✅ 连接成功!\n"); // 读取待办事项资源 console.log("📋 从 MCP 资源获取待办事项:"); console.log("=" .repeat(50)); const todosResource = await client.readResource({ uri: "test://todos" }); const todosData = JSON.parse(todosResource.contents[0].text); console.log("📊 待办事项数据:"); console.log(JSON.stringify(todosData, null, 2)); console.log("\n📈 数据分析:"); console.log(`总数: ${todosData.length}个`); console.log(`已完成: ${todosData.filter(t => t.completed).length}个`); console.log(`待完成: ${todosData.filter(t => !t.completed).length}个`); console.log(`完成率: ${((todosData.filter(t => t.completed).length / todosData.length) * 100).toFixed(1)}%`); } catch (error) { console.error("❌ 获取待办事项时出现错误:", error); } finally { // 关闭连接 await client.close(); console.log("\n👋 客户端已关闭连接"); } } // 运行脚本 getTodosFromMcp().catch(error => { console.error("❌ 脚本执行失败:", error); process.exit(1); });

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/small-tou/mcp-test'

If you have feedback or need assistance with the MCP directory API, please join our Discord server