Skip to main content
Glama
15-case-studies.md18.8 kB
# Case Studies - Real-World Examples ## Technology Case Studies ### Case Study 1: Netflix - Microservices Migration ``` BACKGROUND: - 2008: Monolithic architecture, single points of failure - Major outage led to strategic rethink - Needed to scale for global streaming CHALLENGE: - Monolith couldn't scale horizontally - Database was bottleneck - Deployment was all-or-nothing - Team dependencies slowed development SOLUTION: 1. Gradual decomposition into microservices 2. API gateway pattern 3. Circuit breaker pattern (Hystrix) 4. Service mesh for communication 5. Chaos engineering (Chaos Monkey) ARCHITECTURE: ┌─────────────────────────────────────────┐ │ API Gateway │ └─────────────────┬───────────────────────┘ │ ┌─────────────┼─────────────┐ │ │ │ ┌───▼───┐ ┌─────▼─────┐ ┌───▼───┐ │Account│ │Recommendation│ │Content│ │Service│ │ Service │ │Service│ └───────┘ └─────────────┘ └───────┘ RESULTS: - 99.99% availability achieved - Deploy thousands of times per day - Scale to 200M+ subscribers globally - Teams can innovate independently KEY LESSONS: 1. Start migration with low-risk services 2. Invest heavily in observability 3. Build resilience patterns from start 4. Culture change as important as tech ``` ### Case Study 2: Spotify - Squad Model ``` BACKGROUND: - Rapid growth creating coordination problems - Traditional Agile not scaling - Need for autonomy + alignment CHALLENGE: - 1000+ engineers - Multiple products and platforms - Need for innovation speed - Avoid bureaucracy SOLUTION: Spotify Model STRUCTURE: ┌─────────────────────────────────────────┐ │ TRIBE │ │ (Collection of squads in related area) │ ├─────────────────────────────────────────┤ │ ┌───────┐ ┌───────┐ ┌───────┐ ┌───────┐│ │ │Squad 1│ │Squad 2│ │Squad 3│ │Squad 4││ │ │ │ │ │ │ │ │ ││ │ └───┬───┘ └───┬───┘ └───┬───┘ └───┬───┘│ │ │ │ │ │ │ │ └─────────┴────┬────┴─────────┘ │ │ │ │ │ CHAPTER (skill group) │ │ (e.g., all backend engineers) │ │ │ │ │ GUILD (interest group) │ │ (e.g., web performance guild) │ └─────────────────────────────────────────┘ SQUAD CHARACTERISTICS: - 6-12 people - Cross-functional - Own their mission end-to-end - Autonomous decision-making - Co-located RESULTS: - Faster feature delivery - Higher employee satisfaction - Better innovation - Maintained quality at scale KEY LESSONS: 1. Autonomy requires alignment on goals 2. Trust but verify with metrics 3. Cross-pollination prevents silos 4. Culture eats structure for breakfast ``` --- ## Business Strategy Case Studies ### Case Study 3: Apple - Premium Positioning ``` BACKGROUND: - Near bankruptcy in 1997 - Competing on features in commodity market - Too many products, diluted brand CHALLENGE: - Differentiate in commoditized PC market - Justify premium pricing - Build sustainable competitive advantage STRATEGY: 1. Product simplification (4 products) 2. Design as differentiator 3. Vertical integration 4. Ecosystem lock-in 5. Premium brand positioning VALUE PROPOSITION EVOLUTION: 1998: "Think Different" (Brand) 2001: iPod + iTunes (Ecosystem) 2007: iPhone (Platform) 2010: iPad (Category creation) 2015: Apple Watch (Lifestyle) PRICING STRATEGY: ┌────────────────────────────────────────┐ │ PREMIUM PRICE JUSTIFICATION │ ├────────────────────────────────────────┤ │ • Superior design & materials │ │ • Seamless ecosystem integration │ │ • Privacy & security │ │ • Long software support │ │ • Brand status/aspiration │ │ • Retail experience │ └────────────────────────────────────────┘ RESULTS: - Highest profit margins in industry - $2.5T+ market cap - Fiercely loyal customer base - Premium pricing maintained KEY LESSONS: 1. Simplification can be powerful 2. Design is a business strategy 3. Ecosystems create switching costs 4. Brand building requires consistency ``` ### Case Study 4: Amazon - Flywheel Effect ``` BACKGROUND: - Started as online bookstore (1994) - Long-term vision despite losses - Customer obsession philosophy THE FLYWHEEL: ┌───────────────┐ │ Lower Prices │ └───────┬───────┘ │ ┌────────────▼────────────┐ │ More Customers │ └────────────┬────────────┘ │ ┌────────────▼────────────┐ │ More Sellers │ └────────────┬────────────┘ │ ┌────────────▼────────────┐ │ More Selection │ └────────────┬────────────┘ │ ┌────────────▼────────────┐ │ Better Experience │ └────────────┬────────────┘ │ ┌────────────▼────────────┐ │ Lower Cost Structure │ └────────────┬────────────┘ │ └──────► Lower Prices (repeat) KEY STRATEGIES: 1. Customer obsession over competitor focus 2. Long-term thinking (accept short-term losses) 3. Invention and experimentation 4. Operational excellence 5. Hiring bar (high standards) DIVERSIFICATION: 1997: Books 2000: Marketplace 2006: AWS 2007: Kindle 2014: Alexa 2017: Whole Foods RESULTS: - $1.4T+ market cap - AWS: 32% market share - 200M+ Prime members - Logistics network rival to UPS/FedEx KEY LESSONS: 1. Flywheels compound over time 2. Infrastructure becomes platform 3. Customer experience drives loyalty 4. Willingness to cannibalize own products ``` --- ## Product Development Case Studies ### Case Study 5: Slack - Product-Led Growth ``` BACKGROUND: - Pivoted from failed game (Glitch) - Internal tool became product - Launched 2013 CHALLENGE: - Crowded communication market - Microsoft, Google as competitors - Enterprise sales typically long cycle PLG STRATEGY: ┌─────────────────────────────────────────┐ │ PRODUCT-LED GROWTH │ ├─────────────────────────────────────────┤ │ │ │ FREE TIER │ │ • Full functionality │ │ • Limited history (10K messages) │ │ • Limited integrations (10) │ │ │ │ ↓ Value experienced │ │ │ │ VIRAL LOOPS │ │ • Invite teammates to communicate │ │ • External collaboration │ │ • "Sent from Slack" signature │ │ │ │ ↓ Organic expansion │ │ │ │ PAID CONVERSION │ │ • Team hits limits │ │ • Admin needs controls │ │ • Compliance requirements │ │ │ └─────────────────────────────────────────┘ GROWTH METRICS: - 8,000 signups on launch day - 15,000 DAU in 2 weeks - $100M ARR in 3 years - Acquired by Salesforce for $27.7B PRODUCT DECISIONS: 1. Delightful UX (fun loading messages) 2. Powerful search 3. Integration ecosystem 4. Channel-based organization 5. Mobile parity KEY LESSONS: 1. Product is the marketing 2. Remove friction from trial 3. Build for the end user, sell to enterprise 4. Delight creates word-of-mouth ``` ### Case Study 6: Airbnb - Trust at Scale ``` BACKGROUND: - Stranger-to-stranger marketplace - Safety and trust critical - Founded 2008, during recession CHALLENGE: - Convince people to stay in stranger's home - Convince people to let strangers in home - Build trust without meeting in person TRUST FRAMEWORK: ┌─────────────────────────────────────────┐ │ TRUST ARCHITECTURE │ ├─────────────────────────────────────────┤ │ │ │ VERIFICATION │ │ • ID verification │ │ • Social media connections │ │ • Phone/email verification │ │ │ │ REPUTATION │ │ • Two-way reviews │ │ • Response rate visible │ │ • Superhost program │ │ │ │ PROTECTION │ │ • $1M host guarantee │ │ • 24/7 support │ │ • Secure payments │ │ │ │ DESIGN │ │ • Professional photography │ │ • Detailed descriptions │ │ • Human-centered messaging │ │ │ └─────────────────────────────────────────┘ DESIGN DECISIONS: 1. "Belong Anywhere" positioning 2. High-quality photos (free service) 3. Personal profiles, not anonymous 4. Messaging before booking 5. Local experiences added RESULTS: - 150M+ users - 7M+ listings worldwide - $100B+ IPO valuation - Category creator KEY LESSONS: 1. Trust can be designed 2. Both sides need protection 3. Photography dramatically impacts conversion 4. Community builds moats ``` --- ## AI/ML Case Studies ### Case Study 7: Stitch Fix - AI + Human Curation ``` BACKGROUND: - Personal styling service - Founded 2011 - AI-powered fashion recommendations HYBRID APPROACH: ┌─────────────────────────────────────────┐ │ HUMAN + AI COLLABORATION │ ├─────────────────────────────────────────┤ │ │ │ DATA COLLECTION │ │ • Style quiz (detailed preferences) │ │ • Pinterest board integration │ │ • Purchase/return history │ │ • Feedback on each item │ │ │ │ ↓ │ │ │ │ AI ALGORITHMS │ │ • Recommend items from inventory │ │ • Predict size, style fit │ │ • Optimize inventory allocation │ │ • Price optimization │ │ │ │ ↓ │ │ │ │ HUMAN STYLISTS │ │ • Review AI recommendations │ │ • Add personal touch │ │ • Write personalized notes │ │ • Final curation │ │ │ └─────────────────────────────────────────┘ AI APPLICATIONS: 1. Recommendation engine (collaborative filtering) 2. Demand forecasting 3. Inventory management 4. Size prediction 5. Trend identification RESULTS: - 4M+ active clients - 80%+ keep rate - $2B+ annual revenue - Unique data moat KEY LESSONS: 1. AI augments, doesn't replace humans 2. Unique data creates competitive advantage 3. Feedback loops improve algorithms 4. Personalization drives retention ``` ### Case Study 8: DeepMind - AlphaFold ``` BACKGROUND: - Protein folding: 50-year grand challenge - Understanding structure enables drug discovery - Previous methods slow and expensive CHALLENGE: - Predict 3D protein structure from sequence - Millions of possible configurations - Computationally intractable APPROACH: 1. Deep learning on known structures 2. Attention mechanisms for residue relationships 3. Iterative refinement 4. Multi-task learning ARCHITECTURE INNOVATIONS: ┌─────────────────────────────────────────┐ │ ALPHAFOLD 2 ARCHITECTURE │ ├─────────────────────────────────────────┤ │ │ │ INPUT │ │ • Amino acid sequence │ │ • Multiple sequence alignment │ │ • Structural templates │ │ │ │ ↓ │ │ │ │ EVOFORMER │ │ • 48 transformer blocks │ │ • Co-evolution patterns │ │ • Pair representations │ │ │ │ ↓ │ │ │ │ STRUCTURE MODULE │ │ • 3D coordinate prediction │ │ • Iterative refinement │ │ • Confidence scoring │ │ │ │ ↓ │ │ │ │ OUTPUT: 3D Structure │ │ │ └─────────────────────────────────────────┘ RESULTS: - 90%+ accuracy (vs 60% previous best) - Solved 200M+ protein structures - Database freely available - Nobel Prize-worthy contribution IMPACT: - Accelerates drug discovery - Enables new research - Open-sourced for scientific community - Demonstrates AI for scientific discovery KEY LESSONS: 1. AI can solve previously intractable problems 2. Domain expertise + ML expertise critical 3. Open science accelerates progress 4. Long-term research investment pays off ``` --- ## Failure Case Studies ### Case Study 9: Quibi - Lessons from Failure ``` BACKGROUND: - Short-form premium streaming - $1.75B raised - Star-studded content - Launched April 2020 WHAT WENT WRONG: ┌─────────────────────────────────────────┐ │ FAILURE ANALYSIS │ ├─────────────────────────────────────────┤ │ │ │ PRODUCT-MARKET FIT │ │ ✗ Assumed commute use case │ │ ✗ COVID eliminated that use case │ │ ✗ Couldn't watch on TV │ │ ✗ No sharing/social features │ │ │ │ COMPETITIVE POSITIONING │ │ ✗ TikTok free, Quibi paid │ │ ✗ YouTube dominated short-form │ │ ✗ Netflix at same price point │ │ │ │ EXECUTION │ │ ✗ Tech issues at launch │ │ ✗ No TV app initially │ │ ✗ DRM prevented screenshots │ │ │ │ ASSUMPTIONS │ │ ✗ Premium content always wins │ │ ✗ Mobile-only was differentiator │ │ ✗ Hollywood model applies to streaming │ │ │ └─────────────────────────────────────────┘ TIMELINE: - April 2020: Launch - July 2020: 72% user drop-off - October 2020: Announced shutdown - Duration: 6 months MONEY BURNED: - $1.75B raised - ~$2B total spent - Content sold for ~$100M KEY LESSONS: 1. Test assumptions before scaling 2. Pivot capability essential 3. Competition defines your category 4. User behavior > assumed behavior 5. Money can't buy product-market fit ```

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/seanshin0214/persona-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server