/**
* Integration with Claudio Multi-Agent Orchestration System
* Provides learning capabilities to Claudio agents
*/
import SelfLearningClient from '../lib/self-learning-client.js';
import logger from '../lib/logger.js';
export class ClaudioLearningAgent {
constructor(options = {}) {
this.agentId = 'learning-agent';
this.agentName = 'MCP Self-Learning Agent';
this.version = '1.0.0';
this.capabilities = [
'pattern-analysis',
'performance-optimization',
'predictive-suggestions',
'knowledge-management'
];
this.client = new SelfLearningClient({
baseUrl: options.mcpServerUrl || 'http://localhost:8765'
});
this.isConnected = false;
this.sessionId = null;
}
async initialize() {
try {
await this.client.connect();
this.isConnected = true;
logger.info('Claudio learning agent initialized', {
agentId: this.agentId,
capabilities: this.capabilities
});
return {
success: true,
agentId: this.agentId,
capabilities: this.capabilities
};
} catch (error) {
logger.error('Failed to initialize Claudio learning agent', { error: error.message });
throw error;
}
}
async handleRequest(request) {
if (!this.isConnected) {
throw new Error('Learning agent not connected');
}
const { action, data, context } = request;
try {
switch (action) {
case 'analyze-interaction':
return await this.analyzeInteraction(data, context);
case 'get-insights':
return await this.getInsights(context);
case 'optimize-workflow':
return await this.optimizeWorkflow(data, context);
case 'predict-next-action':
return await this.predictNextAction(data, context);
case 'learn-from-outcome':
return await this.learnFromOutcome(data, context);
default:
throw new Error(`Unknown action: ${action}`);
}
} catch (error) {
logger.error('Learning agent request failed', {
action,
error: error.message
});
throw error;
}
}
async analyzeInteraction(data, context) {
const interaction = {
type: 'claudio-interaction',
input: data.input || '',
output: data.output || '',
success: data.success !== false,
context: {
...context,
agentId: context.sourceAgent || 'unknown',
workflowId: context.workflowId,
orchestrator: 'claudio'
},
performance: {
duration: data.duration || 0,
resourceUsage: data.resourceUsage || {}
}
};
const result = await this.client.analyzePattern(interaction);
logger.debug('Analyzed Claudio interaction', {
patternId: result.patternId,
sourceAgent: context.sourceAgent
});
return {
success: true,
patternId: result.patternId,
features: result.features,
recommendations: result.recommendations,
learningImpact: this.assessLearningImpact(result)
};
}
async getInsights(context) {
const insights = await this.client.getInsights();
// Filter insights relevant to Claudio
const claudioInsights = this.filterClaudioInsights(insights);
return {
success: true,
insights: claudioInsights,
recommendations: this.generateClaudioRecommendations(claudioInsights),
metadata: {
retrievedAt: new Date().toISOString(),
context
}
};
}
async optimizeWorkflow(data, context) {
const workflowContext = {
workflow: data.workflowId,
agents: data.involvedAgents || [],
currentStep: data.currentStep,
performance: data.performance || {}
};
const optimizations = await this.client.getOptimizations('claudio-workflow');
const predictions = await this.client.predictNextAction(workflowContext);
return {
success: true,
optimizations: this.adaptOptimizationsForClaudio(optimizations),
nextStepSuggestions: predictions.suggestions || [],
performanceImprovements: this.calculatePerformanceImprovements(data, optimizations),
confidence: predictions.confidence || 0.5
};
}
async predictNextAction(data, context) {
const predictionContext = {
currentAgent: context.sourceAgent,
workflowState: data.workflowState,
userIntent: data.userIntent,
availableAgents: data.availableAgents || [],
history: data.recentActions || []
};
const predictions = await this.client.predictNextAction(predictionContext);
return {
success: true,
predictions: predictions.suggestions?.map(suggestion => ({
action: suggestion.action,
confidence: suggestion.confidence,
reasoning: suggestion.reasoning,
suggestedAgent: this.mapActionToAgent(suggestion.action, data.availableAgents)
})) || [],
confidence: predictions.confidence || 0.5,
metadata: predictions.metadata
};
}
async learnFromOutcome(data, context) {
const outcomeInteraction = {
type: 'claudio-outcome',
input: JSON.stringify(data.initialRequest),
output: JSON.stringify(data.finalResult),
success: data.success,
context: {
...context,
workflowId: data.workflowId,
involvedAgents: data.involvedAgents,
totalDuration: data.totalDuration,
userSatisfaction: data.userSatisfaction
},
performance: {
duration: data.totalDuration,
efficiency: data.efficiency,
accuracy: data.accuracy
}
};
const result = await this.client.analyzePattern(outcomeInteraction);
// Trigger learning cycle if enough outcomes collected
const insights = await this.client.getInsights();
const totalInteractions = insights.insights?.metrics?.totalInteractions || 0;
if (totalInteractions > 0 && totalInteractions % 10 === 0) {
await this.client.triggerLearning();
}
return {
success: true,
learned: true,
patternId: result.patternId,
impact: this.assessLearningImpact(result),
nextRecommendations: result.recommendations
};
}
filterClaudioInsights(insights) {
const claudioPatterns = insights.insights.topPatterns?.filter(pattern =>
pattern.type?.includes('claudio') ||
pattern.features?.contextualCues?.orchestrator === 'claudio'
) || [];
return {
...insights.insights,
topPatterns: claudioPatterns,
claudioSpecific: {
totalClaudioInteractions: claudioPatterns.reduce((sum, p) => sum + (p.count || 0), 0),
mostUsedAgents: this.extractAgentUsage(claudioPatterns),
workflowEfficiency: this.calculateWorkflowEfficiency(claudioPatterns)
}
};
}
generateClaudioRecommendations(insights) {
const recommendations = [];
// Agent usage recommendations
if (insights.claudioSpecific?.mostUsedAgents) {
const agents = Object.entries(insights.claudioSpecific.mostUsedAgents)
.sort(([,a], [,b]) => b - a);
if (agents.length > 3) {
recommendations.push({
type: 'agent-optimization',
message: `Consider optimizing frequently used agents: ${agents.slice(0, 3).map(([name]) => name).join(', ')}`,
priority: 'medium',
actionable: true
});
}
}
// Workflow efficiency recommendations
if (insights.claudioSpecific?.workflowEfficiency < 0.7) {
recommendations.push({
type: 'workflow-optimization',
message: 'Workflow efficiency below optimal threshold. Consider reviewing agent coordination patterns.',
priority: 'high',
actionable: true
});
}
// Performance recommendations
if (insights.performanceMetrics?.averageResponseTime > 5000) {
recommendations.push({
type: 'performance-optimization',
message: 'High average response time detected. Consider agent parallelization or caching.',
priority: 'high',
actionable: true
});
}
return recommendations;
}
adaptOptimizationsForClaudio(optimizations) {
return optimizations.optimizations?.map(opt => ({
...opt,
claudioSpecific: true,
implementation: this.generateClaudioImplementation(opt),
estimatedImpact: this.estimateImpactForClaudio(opt)
})) || [];
}
calculatePerformanceImprovements(workflowData, optimizations) {
const basePerformance = workflowData.performance || {};
const improvements = {};
optimizations.optimizations?.forEach(opt => {
if (opt.type === 'response-time') {
improvements.responseTime = {
current: basePerformance.averageResponseTime || 0,
potential: (basePerformance.averageResponseTime || 0) * 0.7, // 30% improvement estimate
improvement: '30%'
};
}
if (opt.type === 'resource-usage') {
improvements.resourceUsage = {
current: basePerformance.memoryUsage || 0,
potential: (basePerformance.memoryUsage || 0) * 0.8, // 20% improvement estimate
improvement: '20%'
};
}
});
return improvements;
}
mapActionToAgent(action, availableAgents) {
// Simple mapping logic - in practice this would be more sophisticated
const actionAgentMap = {
'analyze': 'analysis-agent',
'generate': 'generation-agent',
'validate': 'validation-agent',
'execute': 'execution-agent',
'monitor': 'monitoring-agent'
};
const suggestedAgentType = actionAgentMap[action.split('-')[0]] || 'general-agent';
return availableAgents.find(agent =>
agent.type === suggestedAgentType || agent.capabilities?.includes(action)
) || availableAgents[0];
}
assessLearningImpact(result) {
const features = result.features || {};
const recommendations = result.recommendations || [];
let impact = 'low';
if (recommendations.length > 2) impact = 'medium';
if (features.confidence > 0.8) impact = 'high';
if (features.novelty && features.novelty > 0.7) impact = 'high';
return {
level: impact,
factors: {
recommendationCount: recommendations.length,
confidence: features.confidence || 0,
novelty: features.novelty || 0
}
};
}
extractAgentUsage(patterns) {
const agentUsage = {};
patterns.forEach(pattern => {
const agentId = pattern.context?.agentId || 'unknown';
agentUsage[agentId] = (agentUsage[agentId] || 0) + (pattern.count || 1);
});
return agentUsage;
}
calculateWorkflowEfficiency(patterns) {
if (!patterns.length) return 1.0;
const successfulPatterns = patterns.filter(p => p.features?.success !== false);
return successfulPatterns.length / patterns.length;
}
generateClaudioImplementation(optimization) {
return {
description: `Claudio implementation for: ${optimization.description}`,
steps: [
'Update agent configuration',
'Modify workflow orchestration',
'Deploy optimized agents',
'Monitor performance improvements'
],
estimatedEffort: 'medium',
dependencies: optimization.dependencies || []
};
}
estimateImpactForClaudio(optimization) {
// Simplified impact estimation
const impactMap = {
'performance': 0.25,
'accuracy': 0.15,
'efficiency': 0.20,
'resource-usage': 0.10
};
return impactMap[optimization.type] || 0.10;
}
async cleanup() {
if (this.client) {
// Cleanup client connections (Node.js client disconnects WebSocket automatically)
}
this.isConnected = false;
logger.info('Claudio learning agent cleaned up');
}
}
export default ClaudioLearningAgent;