# ProduckAI MCP Server
[](https://www.python.org/downloads/)
[](https://opensource.org/licenses/MIT)
[](https://modelcontextprotocol.io)
[](https://github.com/psf/black)
[](https://github.com/rohitsaraff33-bit/produckai-mcp-server/blob/main/CONTRIBUTING.md)
> Transform scattered voice of customer feedback into actionable insights using AI-powered analysis and seamless Claude Desktop integration.
## π What is ProduckAI?
**ProduckAI MCP Server** brings enterprise-grade product feedback analysis directly into your AI workflows. Seamlessly integrate with Claude Desktop to analyze customer feedback, generate insights, prioritize features, and create executive-ready PRDsβall using natural language.
### Key Value Proposition
- **70% faster** Scattered VOC -> AI-powered generation
- **Multi-source ingestion**: Slack, Google Drive, Zoom, JIRA, CSV
- **Smart prioritization**: 6-dimension VOC scoring
- **Evidence-backed decisions**: Every PRD linked to customer quotes
- **50 specialized tools**: Complete workflow from collection to execution
### Why Open Source?
Product management is evolving with AI, but most tools are closed source and expensive. **This project exists to democratize AI-powered product management** for teams of all sizes.
By open sourcing this MCP server, we're creating a platform where:
- π€ **PMs share learnings** - Your feedback analysis insights help others prioritize better
- π§ **Engineers build together** - Improve clustering algorithms, add integrations, enhance AI prompts
- π **Community grows knowledge** - Document best practices, share PRD templates, teach new PMs
**This isn't just a toolβit's a movement to make product management more data-driven, evidence-based, and accessible to everyone.**
If you're a PM who's ever struggled with feedback overload, or an engineer building tools for PMs, **this project is for you**. Contribute,learn, and help shape the future of AI-assisted product management.
---
## β¨ Features
### π₯ Multi-Source Feedback Collection
- **Slack** - Auto-sync channels with AI-powered customer detection
- **Google Drive** - Process docs, PDFs with OCR
- **Zoom** - Auto-fetch recordings, AI transcript analysis
- **JIRA** - Bidirectional sync with issue tracking
- **CSV/Manual** - Bulk upload or quick capture
### π§ AI-Powered Analysis
- **Semantic Clustering** - Group similar feedback automatically
- **Insight Generation** - AI creates actionable themes
- **Sentiment Detection** - Identify urgent vs nice-to-have
- **Customer Attribution** - Auto-match feedback to customers
### π― Smart Prioritization
- **VOC Scoring** - 6-dimension scoring (0-100):
- Customer Impact (30%) - Tier, revenue, strategic
- Frequency (20%) - How often mentioned
- Recency (15%) - How recent
- Sentiment (15%) - Urgency level
- Theme Alignment (10%) - Strategic fit
- Effort (10%) - Implementation complexity
### π PRD Generation
- **AI-Powered PRDs** - Strategic documents from insights
- **Evidence-Based** - Includes direct customer quotes
- **Segment-Aware** - Tailored for Enterprise vs SMB
- **Risk Assessment** - Effort-based implementation risks
- **Version Tracking** - PRD history and updates
### π JIRA Integration
- **Bidirectional Sync** - Issues β Feedback
- **Auto-Priority** - VOC score β JIRA priority
- **Issue Creation** - Generate epics from insights
- **Linkage Tracking** - Trace feedback to issues
---
## π Quick Start
### Prerequisites
- Python 3.11+
- Anthropic API Key ([get one here](https://console.anthropic.com/settings/keys))
- Claude Desktop ([download](https://claude.ai/download))
### Installation
```bash
pip install produckai-mcp-server
```
### Configuration
1. **Create environment file:**
```bash
cp .env.example .env
# Edit .env and add your ANTHROPIC_API_KEY
```
2. **Configure Claude Desktop** (`~/Library/Application Support/Claude/claude_desktop_config.json`):
```json
{
"mcpServers": {
"produckai": {
"command": "produckai-mcp",
"env": {
"ANTHROPIC_API_KEY": "your-api-key-here"
}
}
}
}
```
3. **Restart Claude Desktop**
### First Use
Try these commands in Claude:
```
"Upload the demo feedback CSV at ./demo-data/feedback.csv"
"Run clustering and show me the top themes"
"Calculate VOC scores and show top 5 insights"
"Generate a PRD for the highest-priority insight"
```
---
## π οΈ Available Tools (50 Total)
### π₯ Ingestion (21 tools)
- **Slack**: setup, sync channels, tag customers, bot filters
- **Google Drive**: setup, browse, sync folders, preview, processing config
- **Zoom**: setup, sync recordings, analyze meetings, insights, customer linking
- **JIRA**: setup, browse projects, bidirectional sync, mapping, reports
- **Manual**: CSV upload, Zoom transcript, raw capture, templates
### βοΈ Processing (4 tools)
- `run_clustering` - Generate themes and insights
- `generate_embeddings` - Create vector embeddings
- `get_themes` - List all themes
- `get_theme_details` - Deep-dive on theme
### π Query (4 tools)
- `search_insights` - Natural language search
- `get_insight_details` - Full insight data
- `search_feedback` - Search raw feedback
- `get_customer_feedback` - Customer-specific view
### π― VOC Scoring (4 tools)
- `calculate_voc_scores` - Score feedback/themes
- `get_top_feedback_by_voc` - Priority-ranked list
- `configure_voc_weights` - Customize algorithm
- `get_voc_trends` - Track changes over time
### π PRD Generation (6 tools)
- `generate_prd` - Create PRD from insight
- `list_prds` - Browse generated PRDs
- `get_prd` - View full PRD
- `update_prd_status` - Workflow tracking
- `regenerate_prd` - Update after changes
- `export_prd` - Export to markdown
### π₯ Management (11 tools)
- Status checks, sync monitoring, health checks, configuration
### π Quick Reference
| Integration | Setup Time | Cost/Month | Key Features |
|-------------|------------|------------|--------------|
| **Slack** | 10 min | $1-2 | AI classification, delta sync, bot filtering |
| **Google Drive** | 15 min | $5-10 | Multi-format, comments, auto-detect |
| **Zoom** | 10 min | $3-4 | Auto-download, AI analysis, sentiment |
| **JIRA** | 5 min | Free | Bidirectional, VOC priority, evidence |
| **CSV** | 0 min | Free | Bulk upload, templates, quick capture |
| Feature | Time | Cost | Output |
|---------|------|------|--------|
| **Clustering** (100 items) | 1-2 min | $0.20 | Themes & insights |
| **VOC Scoring** (100 items) | 10 sec | $0.01 | Priority ranking (0-100) |
| **PRD Generation** | 10-15 sec | $0.05-0.10 | Strategic document |
---
## π Complete Workflow Example
### Weekly Feedback Triage (20 minutes)
```bash
# Monday: Collect feedback
"Sync Slack #customer-feedback channel for the last 7 days"
"Sync Zoom recordings from the past week"
"Upload the quarterly feedback CSV"
# Tuesday: Analyze
"Run clustering to identify themes"
"Show me the top 10 themes by feedback count"
# Wednesday: Prioritize
"Calculate VOC scores for all insights"
"Show me the top 5 highest-priority insights"
# Thursday: Document
"Generate a PRD for the top insight about API rate limiting"
"Export the PRD to ~/Documents/PRDs/"
# Friday: Execute
"Sync the top 3 insights to JIRA project PROD"
"Show JIRA sync status"
```
**Result:** 3 executive-ready PRDs, synced to JIRA, evidence-backed by customer feedback.
---
## ποΈ Architecture
```
βββββββββββββββββββ
β Data Sources β Slack, Drive, Zoom, JIRA, CSV
ββββββββββ¬βββββββββ
β
βΌ
βββββββββββββββββββ
β MCP Server β 50 tools, state management, AI classification
β (This Package) β
ββββββββββ¬βββββββββ
β
βΌ
βββββββββββββββββββ
β ProduckAI API β Clustering, insights, embeddings
β (Optional) β
ββββββββββ¬βββββββββ
β
βΌ
βββββββββββββββββββ
β Claude Desktop β Natural language interface
βββββββββββββββββββ
```
**Deployment Model:** Local single-user (each PM runs their own instance)
---
## π§ͺ Demo Data
Try ProduckAI with sample data:
```bash
# Generate demo data (50 feedback items)
python scripts/generate_demo_data.py
# In Claude:
"Upload demo-data/feedback.csv"
"Run clustering"
"Generate PRD for top insight"
```
See [demo-data/README.md](demo-data/README.md) for details.
---
## π Integration Setup
### Slack
1. Create Slack App: https://api.slack.com/apps
2. Add scopes: `channels:history`, `channels:read`, `users:read`
3. Install to workspace
4. In Claude: `"Setup Slack integration"`
### Google Drive
1. Create GCP project: https://console.cloud.google.com
2. Enable Google Drive API
3. Create OAuth credentials (Desktop app)
4. In Claude: `"Setup Google Drive integration"`
### JIRA
1. Generate API token: https://id.atlassian.com/manage/api-tokens
2. In Claude: `"Setup JIRA integration with server URL, email, and token"`
### Zoom
1. Create OAuth app: https://marketplace.zoom.us/develop/create
2. Add scope: `recording:read:admin`
3. In Claude: `"Setup Zoom integration"`
See [docs/](docs/) for detailed setup guides.
---
## π Documentation
- [Installation Guide](INSTALLATION.md)
- [Quick Start Guide](QUICKSTART.md)
- [Integration Setup](INTEGRATIONS.md)
- [End-to-End Workflow](docs/END_TO_END_WORKFLOW.md)
- [Open Source Roadmap](docs/OPEN_SOURCE_ROADMAP.md)
- [Phase Implementation Docs](docs/)
- [Phase 5: JIRA & VOC](docs/PHASE_5_COMPLETE.md)
- [Phase 6: PRD Generation](docs/PHASE_6_COMPLETE.md)
- [PRD Generation Prompt](docs/PRD_GENERATION_PROMPT.md)
- [Contributing Guide](CONTRIBUTING.md)
---
## π§βπ» Development
### Setup
```bash
# Clone repository
git clone https://github.com/produckai/produckai-mcp-server.git
cd produckai-mcp-server
# Create virtual environment
python -m venv venv
source venv/bin/activate # Windows: venv\Scripts\activate
# Install in development mode
pip install -e ".[dev]"
```
### Testing
```bash
# Run tests
pytest
# Run with coverage
pytest --cov
# Run linting
ruff check .
# Format code
black .
# Type checking
mypy src/
```
### Code Quality
We use:
- **Black** for code formatting
- **Ruff** for linting
- **MyPy** for type checking
- **Pytest** for testing
See [CONTRIBUTING.md](CONTRIBUTING.md) for guidelines.
---
## π Troubleshooting
### MCP Server Not Appearing in Claude
1. Check config: `cat ~/Library/Application\ Support/Claude/claude_desktop_config.json`
2. Verify command: `which produckai-mcp`
3. Check logs: `tail -f ~/.produckai/logs/mcp-server.log`
4. Restart Claude Desktop completely
### API Connection Issues
```bash
# Test Anthropic API
export ANTHROPIC_API_KEY=your-key
python -c "from anthropic import Anthropic; print(Anthropic().messages.create(model='claude-3-haiku-20240307', max_tokens=10, messages=[{'role':'user','content':'hi'}]))"
```
### Common Issues
- **"Command not found"** - Ensure `produckai-mcp` is in PATH
- **"Connection refused"** - Check API keys are set
- **"Import error"** - Reinstall: `pip install --force-reinstall produckai-mcp-server`
See [docs/TROUBLESHOOTING.md](docs/) for more.
---
## π€ Contributing
We welcome contributions! Here's how:
1. **Fork** the repository
2. **Create** a feature branch: `git checkout -b feature/your-feature`
3. **Commit** your changes: `git commit -m "Add feature"`
4. **Push** to your fork: `git push origin feature/your-feature`
5. **Open** a Pull Request
See [CONTRIBUTING.md](CONTRIBUTING.md) for detailed guidelines.
**Areas We Need Help:**
- π Documentation improvements
- π Bug fixes and testing
- β¨ New integration sources
- π Internationalization
- π¨ UI/UX improvements
---
## π Performance & Cost
### Speed
- **Feedback sync:** ~1-2 seconds per item
- **Clustering:** ~1-2 minutes for 100 items
- **PRD generation:** ~10-15 seconds per PRD
### Cost (AI APIs)
- **Embeddings:** ~$0.01 per 100 items (OpenAI)
- **Clustering/Insights:** ~$0.20 per 100 items (Claude Haiku)
- **PRD Generation:** ~$0.05-0.10 per PRD (Claude Sonnet)
- **Monthly (100 PRDs):** ~$5-10 total
---
## π License
MIT License - see [LICENSE](LICENSE) for details.
---
## π Acknowledgments
- Built with [MCP SDK](https://modelcontextprotocol.io)
- Powered by [Anthropic Claude](https://anthropic.com)
- Inspired by product teams everywhere
---
## π Links
- [Issues](https://github.com/produckai/produckai-mcp-server/issues) - Report bugs
- [Discussions](https://github.com/produckai/produckai-mcp-server/discussions) - Ask questions
- [Changelog](CHANGELOG.md) - Release notes
- [Security Policy](SECURITY.md) - Report vulnerabilities
---
## β Star History
If you find this project useful, please star it! It helps others discover ProduckAI.
---
## π§ Contact & Community
### Get in Touch
- **Creator:** Rohit Saraf ([rohitsaraff33@gmail.com](mailto:rohitsaraff33@gmail.com))
- **Issues:** [GitHub Issues](https://github.com/rohitsaraff33-bit/produckai-mcp-server/issues) - Bug reports, feature requests
- **Discussions:** [GitHub Discussions](https://github.com/rohitsaraff33-bit/produckai-mcp-server/discussions) - Questions, ideas, showcases
### Vision & Community
This project was built for **product managers, by product managers**. The goal is to create a thriving open source community where builders
enhance integrations, improve insight generation logic, and share learnings so the entire PM community benefits.
**We especially welcome contributions in:**
- π **Integration enhancements** - New data sources (Linear, Notion, Confluence, etc.)
- π§ **Insight generation** - Advanced clustering algorithms, sentiment analysis improvements
- π **Analytics & metrics** - New VOC scoring dimensions, priority frameworks
- π **PRD templates** - Industry-specific or company-specific variations
- π **Localization** - Multi-language support for global teams
**Whether you're a PM improving your workflow or an engineer building better tools for PMs, your contributions help everyone in the product
community. Let's build this together!**
---
**Built with β€οΈ by [Rohit Saraf](mailto:rohitsaraff33@gmail.com) and the product management community**
---
**Made with β€οΈ by the ProduckAI community**