Skip to main content
Glama

RL-MCP

by rlefko
tables_stock.pyโ€ข2.47 kB
from datetime import datetime, timezone from sqlalchemy import JSON, Column from sqlmodel import Field, SQLModel from app.api.v1.base.tables import BaseMCPTable class StockData(BaseMCPTable, table=True): """Stock data table with vector embedding support""" __tablename__ = "stock_data" # Core stock data fields symbol: str = Field(index=True) data_type: str = Field(index=True) content: str extra_metadata: dict = Field(default_factory=dict, sa_column=Column(JSON)) # Vector embedding fields embedding_id: str | None = Field(default=None, index=True) embedding_model: str | None = Field(default=None) # Performance and caching fields similarity_score: float | None = Field(default=None) cache_key: str | None = Field(default=None, index=True) # Stock-specific fields price: float | None = Field(default=None) volume: int | None = Field(default=None) sentiment_score: float | None = Field(default=None) relevance_score: float | None = Field(default=None) # Timestamp fields for data freshness data_timestamp: datetime | None = Field(default=None) processed_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc)) class VectorEmbedding(SQLModel, table=True): """Separate table for storing vector embeddings""" __tablename__ = "vector_embeddings" id: int | None = Field(default=None, primary_key=True) embedding_id: str = Field(unique=True, index=True) embedding_vector: list[float] = Field(sa_column=Column(JSON)) model_name: str dimension: int # Metadata for embedding management created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc)) last_used: datetime = Field(default_factory=lambda: datetime.now(timezone.utc)) usage_count: int = Field(default=0) class MarketCache(SQLModel, table=True): """Cache table for market data and computed results""" __tablename__ = "market_cache" id: int | None = Field(default=None, primary_key=True) cache_key: str = Field(unique=True, index=True) cache_value: dict = Field(sa_column=Column(JSON)) cache_type: str = Field(index=True) # Cache management fields expires_at: datetime = Field(index=True) created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc)) hit_count: int = Field(default=0) last_accessed: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/rlefko/rl-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server