README.md•10.8 kB
# MCP Template
Production-ready MCP (Model Context Protocol) server template in Python with registry integration, comprehensive configuration management, and extensibility patterns.
## Features
- **Production-Ready**: Enterprise-grade error handling, structured logging, and graceful shutdown
- **Registry Integration**: Automatic server registration, heartbeats, and deregistration
- **Configuration Management**: YAML-based config with environment variable overrides and Pydantic validation
- **Extensible Architecture**: Easy-to-extend base classes for tools, resources, and prompts
- **Type Safety**: Full type hints throughout the codebase
- **Developer Experience**: Comprehensive CLI, extensive documentation, and example implementations
- **Testing**: Unit and integration test examples with pytest
## Quick Start
### Installation
```bash
# Clone or copy this template
cd mcp-template
# Create virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install -e ".[dev]"
# Or using requirements.txt
pip install -r requirements-dev.txt
```
### Initialize Configuration
```bash
# Initialize default configuration
mcp-template init
# This creates:
# - config/config.yaml (server configuration)
# - .env (environment variables)
```
### Run the Server
```bash
# Run with default configuration
mcp-template run
# Run with custom config
mcp-template run --config path/to/config.yaml
# Run in debug mode
mcp-template run --debug
# Validate configuration
mcp-template validate
# Check health
mcp-template health
```
## Project Structure
```
mcp-template/
├── src/mcp_template/
│ ├── core/ # Core server components
│ │ ├── server.py # Base MCP server implementation
│ │ ├── settings.py # Pydantic settings models
│ │ ├── config_loader.py # Configuration loader
│ │ └── logger.py # Structured logging setup
│ ├── registry/ # Registry integration
│ │ ├── base.py # Registry client interface
│ │ ├── http_client.py # HTTP registry implementation
│ │ └── manager.py # Registry lifecycle manager
│ ├── tools/ # MCP tools
│ │ ├── calculator.py # Example calculator tool
│ │ └── search.py # Example search tool
│ ├── resources/ # MCP resources
│ │ ├── config.py # Configuration resource
│ │ └── status.py # Status resource
│ ├── prompts/ # MCP prompts
│ │ └── example.py # Example prompt
│ ├── app.py # Main application
│ └── cli.py # Command-line interface
├── config/
│ └── config.yaml # Server configuration
├── tests/
│ ├── unit/ # Unit tests
│ └── integration/ # Integration tests
├── pyproject.toml # Project metadata and dependencies
├── requirements.txt # Production dependencies
├── requirements-dev.txt # Development dependencies
├── Makefile # Development commands
└── README.md # This file
```
## Configuration
### Configuration File (config/config.yaml)
The main configuration file supports:
- **Server settings**: Name, version, description, debug mode
- **Logging**: Level, format (JSON/text), file output
- **Registry**: URL, authentication, heartbeat settings, metadata
- **Tools/Resources/Prompts**: Enable/disable specific components
Example:
```yaml
server:
name: "my-mcp-server"
version: "0.1.0"
description: "My custom MCP server"
logging:
level: "INFO"
format: "json"
registry:
enabled: true
url: "https://registry.example.com/api/v1"
auth:
type: "api_key"
api_key: "${REGISTRY_API_KEY}"
heartbeat:
enabled: true
interval: 60
tools:
enabled:
- "example_calculator"
- "example_search"
```
### Environment Variables
Override configuration using environment variables with double underscore as separator:
```bash
# Override server name
export SERVER__NAME="production-server"
# Override registry URL
export REGISTRY__URL="https://prod-registry.example.com"
# Set API key
export REGISTRY__AUTH__API_KEY="your-api-key"
# Override logging level
export LOGGING__LEVEL="DEBUG"
```
### Environment Variables File (.env)
Create a `.env` file for local development:
```bash
# Registry
REGISTRY_API_KEY=your-api-key-here
# Server overrides
SERVER__DEBUG=false
# Logging
LOGGING__LEVEL=INFO
```
## Adding Custom Components
### Adding a New Tool
1. Create a new file in `src/mcp_template/tools/`:
```python
# src/mcp_template/tools/my_tool.py
import mcp.types as types
async def my_tool_handler(arguments: dict) -> str:
"""Handle the tool call."""
# Your implementation here
return "Result"
MY_TOOL_SCHEMA = types.Tool(
name="my_tool",
description="Description of what the tool does",
inputSchema={
"type": "object",
"properties": {
"param1": {
"type": "string",
"description": "Parameter description"
}
},
"required": ["param1"]
}
)
```
2. Register it in `src/mcp_template/app.py`:
```python
from .tools.my_tool import my_tool_handler, MY_TOOL_SCHEMA
# In MCPTemplateApp._register_components():
self.server.register_tool(
"my_tool",
my_tool_handler,
MY_TOOL_SCHEMA,
)
```
3. Enable it in `config/config.yaml`:
```yaml
tools:
enabled:
- "my_tool"
```
### Adding a New Resource
Similar pattern - create handler and schema, register in `app.py`, enable in config.
```python
# src/mcp_template/resources/my_resource.py
import mcp.types as types
async def my_resource_handler(uri: str) -> str:
"""Handle resource read."""
return "Resource data"
MY_RESOURCE_SCHEMA = types.Resource(
uri="myresource://example",
name="My Resource",
description="Resource description",
mimeType="application/json"
)
```
### Adding a New Prompt
```python
# src/mcp_template/prompts/my_prompt.py
import mcp.types as types
async def my_prompt_handler(arguments: dict) -> types.GetPromptResult:
"""Handle prompt request."""
return types.GetPromptResult(
description="Prompt description",
messages=[
types.PromptMessage(
role="user",
content=types.TextContent(
type="text",
text="Prompt text"
)
)
]
)
MY_PROMPT_SCHEMA = types.Prompt(
name="my_prompt",
description="Prompt description",
arguments=[
types.PromptArgument(
name="arg1",
description="Argument description",
required=True
)
]
)
```
## Registry Integration
The template includes a pluggable registry system for server discovery and management.
### How It Works
1. **Registration**: On startup, server registers with the registry
2. **Heartbeat**: Periodic heartbeats maintain the registration
3. **Deregistration**: Graceful shutdown deregisters the server
### Custom Registry Backend
Implement the `RegistryClient` interface for custom backends:
```python
from mcp_template.registry.base import RegistryClient
class MyRegistryClient(RegistryClient):
async def register(self, server_info: dict) -> dict:
# Your implementation
pass
async def deregister(self, server_id: str) -> bool:
# Your implementation
pass
# Implement other methods...
```
Then use it in your application:
```python
from mcp_template.registry.manager import RegistryManager
registry_manager = RegistryManager(settings, client=MyRegistryClient())
```
## Development
### Setup Development Environment
```bash
# Install with development dependencies
pip install -e ".[dev]"
# Or using make
make install
```
### Running Tests
```bash
# Run all tests
pytest
# Run with coverage
pytest --cov
# Run only unit tests
pytest tests/unit
# Run only integration tests
pytest tests/integration -m integration
# Using make
make test
```
### Code Quality
```bash
# Format code
make format
# Lint code
make lint
# Type check
make typecheck
# Run all checks
make check
```
### Pre-commit Hooks
```bash
# Install pre-commit hooks
pre-commit install
# Run manually
pre-commit run --all-files
```
## Deployment
### Docker
Create a `Dockerfile`:
```dockerfile
FROM python:3.11-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY src/ src/
COPY config/ config/
RUN pip install -e .
CMD ["mcp-template", "run"]
```
Build and run:
```bash
docker build -t mcp-template .
docker run -e REGISTRY_API_KEY=your-key mcp-template
```
### Environment-Specific Configuration
Create different config files for each environment:
```bash
config/
├── config.yaml # Default
├── config.dev.yaml # Development
├── config.staging.yaml # Staging
└── config.prod.yaml # Production
```
Run with specific config:
```bash
mcp-template run --config config/config.prod.yaml
```
## Monitoring and Observability
### Structured Logging
All logs are structured (JSON format by default) for easy parsing:
```json
{
"timestamp": "2024-01-01T12:00:00.000Z",
"level": "info",
"event": "Server started",
"server": "my-server",
"version": "0.1.0"
}
```
### Health Checks
```bash
# CLI health check
mcp-template health
# Programmatic health check
from mcp_template.app import create_app
app = create_app()
health = await app.server.health_check()
```
## Troubleshooting
### Common Issues
**Configuration file not found**
```bash
# Initialize configuration
mcp-template init
# Or specify path
mcp-template run --config path/to/config.yaml
```
**Registry connection failed**
```bash
# Check registry health
mcp-template health
# Disable registry temporarily
# In config.yaml:
registry:
enabled: false
```
**Import errors**
```bash
# Reinstall in editable mode
pip install -e .
```
## Contributing
1. Fork the repository
2. Create a feature branch
3. Make your changes
4. Add tests
5. Run code quality checks: `make check`
6. Submit a pull request
## License
MIT License - see LICENSE file for details
## Resources
- [MCP Documentation](https://modelcontextprotocol.io/)
- [MCP Python SDK](https://github.com/modelcontextprotocol/python-sdk)
- [Pydantic Documentation](https://docs.pydantic.dev/)
- [Structlog Documentation](https://www.structlog.org/)
## Support
For issues, questions, or contributions, please open an issue on GitHub.