# GitLab MCP Server



An MCP (Model Context Protocol) server for integrating GitLab with AI assistants like Cursor, ChatGPT, and any polymcp-compatible client. Manage merge requests, analyze CI/CD pipelines, create ADR documents, and more.
## What it does
This project exposes GitLab APIs through the MCP protocol, allowing AI assistants to:
- List and manage merge requests
- Analyze failed pipeline jobs with fix suggestions
- Create ADR (Architecture Decision Records) documents in markdown
- View CI/CD job logs
- Trigger pipelines and retry failed jobs
- Deploy to AWS, Azure, and GCP
## Requirements
- Python 3.8 or higher
- PolyMCP (for AI agent integration)
- FastAPI and uvicorn (for HTTP server)
## Installation
```bash
git clone https://github.com/poly-mcp/Gitlab-MCP-Server.git
cd Gitlab-MCP-Server
pip install -r requirements.txt
```
Contents of `requirements.txt`:
```
fastapi>=0.104.0
uvicorn>=0.24.0
aiohttp>=3.9.0
pyyaml>=6.0
docstring-parser>=0.15
python-dotenv>=1.0.0
pydantic>=2.0.0
pip install polymcp==1.2.4
```
## Configuration
Create a `.env` file in the project root:
```bash
# For use with real GitLab
GITLAB_BASE_URL=https://gitlab.com/api/v4
GITLAB_TOKEN=glpat-xxxxxxxxxxxx
GITLAB_PROJECT_ID=12345678
# Optional - security settings
SAFE_MODE=true
DRY_RUN=false
```
## Usage with PolyMCP
This server is fully compatible with the polymcp library. Here is how to use it:
### 1. Start the server
```bash
# Production mode (requires token)
python gitlab_mcp_server.py --http --port 8000
```
### 2. Connect with polymcp
Create a file `gitlab_chat.py`:
```python
#!/usr/bin/env python3
"""GitLab MCP Chat with PolyMCP"""
import asyncio
from polymcp.polyagent import UnifiedPolyAgent, OllamaProvider
async def main():
# Configure the LLM provider (you can use OpenAI, Anthropic, Ollama, etc.)
llm = OllamaProvider(model="gpt-oss:120b-cloud", temperature=0.1)
# Point to the GitLab MCP server
mcp_servers = ["http://localhost:8000/mcp"]
agent = UnifiedPolyAgent(
llm_provider=llm,
mcp_servers=mcp_servers,
verbose=True
)
async with agent:
print("\nGitLab MCP Server connected!\n")
print("Available commands:")
print("- 'show me open merge requests'")
print("- 'analyze failed jobs'")
print("- 'create an ADR for cloud migration'")
print("- 'exit' to quit\n")
while True:
user_input = input("\nYou: ")
if user_input.lower() in ['exit', 'quit']:
print("Session ended.")
break
result = await agent.run_async(user_input, max_steps=5)
print(f"\nGitLab Assistant: {result}")
if __name__ == "__main__":
asyncio.run(main())
```
### 3. Run it
```bash
python gitlab_chat.py
```
Example session:
```
GitLab MCP Server connected!
You: show me open merge requests in project mygroup/myproject
GitLab Assistant: I found 3 open merge requests:
1. MR !42 - "Fix authentication bug"
Author: john_doe
Branch: bugfix/auth -> main
2. MR !43 - "Add caching layer"
Author: jane_smith
Branch: feature/cache -> main
3. MR !44 - "Update dependencies"
Author: bob_wilson
Branch: chore/deps -> main
You: analyze why the pipeline is failing
GitLab Assistant: I analyzed pipeline #12345. There are 2 failed jobs:
1. test:unit (stage: test)
Error: Snapshot test mismatch
Suggestion: Run 'npm test -- -u' to update snapshots
2. security:sonar (stage: security)
Error: Code coverage below threshold (67% < 80%)
Suggestion: Add tests for uncovered functions
You: exit
Session ended.
```
## Usage with Cursor
### Method 1 - Direct import
Copy `cursor_tools.py` to your project and use it directly:
```python
from cursor_tools import *
# List merge requests
mrs = list_open_merge_requests("mygroup/myproject")
# Analyze pipeline
analysis = analyze_pipeline_failures("mygroup/myproject")
# Create ADR
adr = create_architecture_decision(
title="Kubernetes Adoption",
context="We need to scale horizontally",
decision="We will migrate to Kubernetes on GKE",
consequences="Higher operational complexity but better scalability"
)
```
### Method 2 - MCP Configuration
Add to `.cursor/mcp_config.json`:
```json
{
"mcpServers": {
"gitlab": {
"command": "python",
"args": ["gitlab_mcp_server.py", "--mode", "stdio"]
}
}
}
```
## Usage with ChatGPT
1. Start the server and expose it publicly (with ngrok or similar):
```bash
python gitlab_mcp_server.py --http --port 8000
ngrok http 8000
```
2. Create a Custom GPT with Actions pointing to the ngrok URL
3. Or use Code Interpreter by uploading `gitlab_assistant.py`
## Safety Features
The server includes built-in protections:
| Feature | Default | What it does |
|---------|---------|--------------|
| Safe Mode | `ON` | Blocks write operations until you're ready |
| Dry Run | `OFF` | Test operations without executing them |
| Project Allowlist | `*` (all allowed) | Use `*` for all, empty to block all, or list specific projects |
| Rate Limiting | 60/min | Prevents API abuse |
> π‘ Start with `SAFE_MODE=true` to explore safely, then disable when needed.
## Available Tools
### Merge Request Management
| Tool | Description |
|------|-------------|
| `list_merge_requests` | List merge requests with filters (state, author, assignee) |
| `get_merge_request_details` | Get MR details including changes and discussions |
| `create_merge_request` | Create a new merge request |
| `approve_merge_request` | Approve a merge request |
| `merge_merge_request` | Merge a merge request into target branch |
| `rebase_merge_request` | Rebase a merge request onto target branch |
### Code Search
| Tool | Description |
|------|-------------|
| `search_code` | Search for code across project files |
### Pipeline & CI/CD
| Tool | Description |
|------|-------------|
| `list_pipeline_jobs` | List all jobs in a pipeline with status |
| `get_job_log` | Get the log output of a specific job |
| `analyze_failed_jobs` | Analyze failures and suggest fixes |
| `trigger_pipeline` | Trigger a new pipeline run |
| `retry_pipeline` | Retry all failed jobs in a pipeline |
| `cancel_pipeline` | Cancel a running pipeline |
| `retry_failed_job` | Retry a specific failed job |
### ADR (Architecture Decision Records)
| Tool | Description |
|------|-------------|
| `create_adr_document` | Create an ADR document in Markdown format |
| `commit_adr_to_gitlab` | Commit ADR to repository with optional MR |
### Cloud Deployment
| Tool | Description |
|------|-------------|
| `deploy_to_cloud` | Deploy to AWS, Azure, or GCP via pipeline |
## Security
To use the server safely with Cursor or other AI assistants:
1. Create a GitLab token with minimal permissions (only `read_api` and `read_repository`)
2. Enable `SAFE_MODE=true` in the .env file to disable destructive operations
3. Use `DRY_RUN=true` to simulate operations without executing them
4. Limit accessible projects by configuring `ALLOWED_PROJECTS`
The server tracks all operations and provides usage statistics.
## Project Structure
```
Gitlab-MCP-Server/
βββ gitlab_mcp_server.py # Main server
βββ cursor_tools.py # Wrapper for Cursor
βββ gitlab_chat.py # Client for PolyMCP
βββ gitlab_assistant.py # Client for ChatGPT
βββ .env.example # Configuration template
βββ requirements.txt # Dependencies
βββ README.md
```
## Troubleshooting
| Error | Solution |
|-------|----------|
| `GITLAB_TOKEN is required` | Create `.env` file with your token |
| `Operation blocked by safe mode` | Set `SAFE_MODE=false` in `.env` |
| `Access denied to project` | Check token permissions or `ALLOWED_PROJECTS` |
| `Request timed out` | Increase `MAX_RETRIES` in `.env` |
## Contributing
Contributions are welcome. Open an issue to discuss significant changes before proceeding with a pull request.
## License
MIT License - see LICENSE file for details.
## Useful Links
- GitLab API Documentation: https://docs.gitlab.com/ee/api/
- Model Context Protocol: https://modelcontextprotocol.io/
- PolyMCP: [https://github.com/poly-mcp/polymcp](https://github.com/poly-mcp/Polymcp)