Skip to main content
Glama

AVS Document Search System

by patw
README.md2.95 kB
# MCP Document Search System A vector search system for document retrieval using MongoDB Atlas Vector Search and Voyage AI embeddings. Sample data included is for Atlas Vector Search! ## Features - Ingests and chunks markdown documents with hierarchical headers - Generates embeddings using Voyage AI's contextual embeddings API - Stores documents and embeddings in MongoDB with parent-child relationships - Provides a FastMCP server for semantic document search - Supports configurable vector dimensions and chunking strategies ### Available MCP Tools The document search server provides these tools: 1. **search_documents_vector(query: str, limit: int = 5)** - Primary search method using vector similarity - Returns document chunks with metadata and similarity scores - Best for semantic/meaning-based queries 2. **search_documents_lexicaly(query: str, limit: int = 1)** - Fallback search using lexical/text matching - Returns full parent documents with search scores - Useful when vector search doesn't find good matches 3. **get_parent_document(parent_id: str)** - Retrieves the complete parent document by ID - Returns original content and file path - Use after search to get full context for a chunk ![Claude Desktop Tool Call](screenshot.png) ## Prerequisites - Python 3.10+ - MongoDB Atlas cluster with vector search enabled - Voyage AI API key ## Installation 1. Clone the repository: ```bash git clone https://github.com/patw/avs-document-search.git cd avs-document-search ``` 2. Install dependencies: ```bash pip install -r requirements.txt ``` 3. Create a `.env` file based on `sample.env` with your credentials ## Usage 1. Ingest documents in the docs/ directory: ```bash python ingest_docs.py ``` 2. Run the search server: ```bash python avs-mcp.py ``` Running the search server won't do much, other than verify your MongoDB URI is correct, you will need to plug this MCP server into an MCP client like Claude Desktop. Here's a sample config: ```json { "mcpServers": { "Atlas Vector Search Docs": { "command": "uv", "args": [ "run", "--with", "fastmcp, pymongo, requests", "fastmcp", "run", "<path to>/avs-docs-mcp/avs-mcp.py" ] } } } ``` ## Configuration Copy `sample.env` to `.env` and Edit to configure: - MongoDB connection string - Database and collection names - Voyage AI API key - Vector dimensions (256 default) ## Future Improvements - Implement hybrid search combining vector and text search using `$rankFusion` (when MongoDB 8.1 is GA on Atlas) - Support additional file formats (PDF, Word, etc.) with Docling ## Contributing Pull requests are welcome! For major changes, please open an issue first. ## Author Pat Wendorf [pat.wendorf@mongodb.com](mailto:pat.wendorf@mongodb.com) GitHub: [patw](https://github.com/patw) ## License [MIT](https://choosealicense.com/licenses/mit/)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/patw/avs-docs-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server