Skip to main content
Glama
orneryd

M.I.M.I.R - Multi-agent Intelligent Memory & Insight Repository

by orneryd
llama_stub.go1.94 kB
//go:build !cgo || nolocalllm || (!darwin && !linux && !(windows && cuda)) // Package localllm provides CGO bindings to llama.cpp for local GGUF model inference. // // This is a stub implementation for platforms without CGO or llama.cpp support. // To use local GGUF models, build with CGO enabled on a supported platform // (Linux, macOS, Windows with CUDA) and ensure the llama.cpp static library is available. package localllm import ( "context" "errors" "runtime" ) var errNotSupported = errors.New("local GGUF embeddings not supported: build with CGO on linux/darwin/windows (with -tags=cuda for Windows)") // Model wraps a GGUF model for embedding generation. // This is a stub that returns errors on unsupported platforms. type Model struct{} // Options configures model loading and inference. type Options struct { ModelPath string ContextSize int BatchSize int Threads int GPULayers int } // DefaultOptions returns options optimized for embedding generation. func DefaultOptions(modelPath string) Options { threads := runtime.NumCPU() / 2 if threads < 1 { threads = 1 } if threads > 8 { threads = 8 } return Options{ ModelPath: modelPath, ContextSize: 512, BatchSize: 512, Threads: threads, GPULayers: -1, } } // LoadModel returns an error on unsupported platforms. func LoadModel(opts Options) (*Model, error) { return nil, errNotSupported } // Embed returns an error on unsupported platforms. func (m *Model) Embed(ctx context.Context, text string) ([]float32, error) { return nil, errNotSupported } // EmbedBatch returns an error on unsupported platforms. func (m *Model) EmbedBatch(ctx context.Context, texts []string) ([][]float32, error) { return nil, errNotSupported } // Dimensions returns 0 on unsupported platforms. func (m *Model) Dimensions() int { return 0 } // Close is a no-op on unsupported platforms. func (m *Model) Close() error { return nil }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/orneryd/Mimir'

If you have feedback or need assistance with the MCP directory API, please join our Discord server