Skip to main content
Glama

Lingvanex Translate MCP Server

Official
by lingvanex-mt
README.md3.71 kB
# MCP Prototype – Translate Server This project implements an **MCP (Model Context Protocol) server** for text translation. The server supports two transports: * **stdio** – for integration with Claude Desktop * **http (streamable)** – for testing and working via HTTP + SSE --- ## ⚙️ Requirements * Node.js >= 18 * Yarn or npm * Installed [Claude Desktop](https://claude.ai/download) (for stdio integration) * Lingvanex Translator account for text translation --- ## 🔑 Lingvanex Translator Setup To use the Lingvanex Translator you'll need a Lingvanex account. 1. If you don't have one, [sign up for free](https://lingvanex.com/account/) 2. Go to the **Cloud API** tab: [Cloud API](https://lingvanex.com/account/#b2b) 3. Fill out the **Billing Address** data 4. Click **Continue to payment** * To get a free trial, it is **not necessary** to add your payment card 5. Your **API key** will be generated and visible in the **Cloud API** tab: [API key](https://lingvanex.com/account/#b2b) Now you are ready to start using the translation API. Below is a video tutorial of the overall process (if available on Lingvanex site). --- ## 🚀 Installation & Build ```bash # Clone the repository git clone https://github.com/you/mcp-prototype.git cd mcp-prototype ``` # Install dependencies ```bash yarn install ``` --- ## 🔌 Run in stdio mode (Claude Desktop) **stdio** mode is used by Claude Desktop to connect to local MCP servers. ### Set environment variable: TRANSPORT=stdio ### Start the server: ```bash yarn build yarn start ``` ### Expected output: ``` MCP stdio transport running Translate MCP Server ready ``` --- ## 🌐 Run in HTTP mode (streamable) **http** mode runs a local HTTP server with HTTP transport. Useful for browser testing or with `curl`. ### Set environment variables: ```bash TRANSPORT=http HTTP_PORT=3000 ``` ### Start the server: ```bash yarn build yarn start ``` ### Test the server: ```bash curl http://127.0.0.1:3000/ping ``` **Expected response:** ```json { "status": "ok", "transport": "http" } ``` ### Use MCP Inspector for debugging: ```bash npx @modelcontextprotocol/inspector ``` In the MCP Inspector UI, select Transport Type - Streamable HTTP; URL - http://localhost:3000/mcp. Click Connect. --- ## 🖥️ Integration with Claude Desktop Claude Desktop discovers local MCP servers via config file: * **Windows**: `%APPDATA%\Claude\claude_desktop_config.json` * **macOS**: `~/Library/Application Support/Claude/claude_desktop_config.json` * **Linux**: `~/.config/Claude/claude_desktop_config.json` ### Example config (Windows) Open (or create) `claude_desktop_config.json` and add: ```json { "mcpServers": { "translate": { "command": "node", "args": [ "C:\\Users\\path\\to\\project\\dist\\index.js" ] } } } ``` > ⚠️ Make sure to update the path to your local `dist/index.js` after build! --- ## ✅ How to verify 1. Launch Claude Desktop. 2. Enter a request like: *"Use the MCP tool `translate_text` to translate 'Hello world' into Russian."* 3. If everything is configured correctly, Claude will call your MCP server and return the translation. --- ## 📌 Available Tools ### `translate_text` Translate text from one language into another. **Arguments:** * `text` – the text to translate * `sourceLang` – source language code (e.g. `"en"`) * `targetLang` – target language code (e.g. `"ru"`) **Example request:** ```json { "tool": "translate_text", "args": { "text": "Good morning", "sourceLang": "en", "targetLang": "fr" } } ``` **Example response:** ```json { "content": [ { "type": "text", "text": "Bonjour" } ] } ``` ---

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/lingvanex-mt/MCP-Lingvanex-Translate'

If you have feedback or need assistance with the MCP directory API, please join our Discord server