Skip to main content
Glama

AI-Powered MCP Server

by larryfang
openaiclient.js1.85 kB
require('dotenv').config(); const { OpenAI } = require("openai"); const axios = require("axios"); const openai = new OpenAI({ apiKey: process.env.OPENAI_API_KEY }); const mcpFunction = { name: "get_ticket_context", description: "Returns customer or org context from Zendesk using a ticket ID, user ID, or organization ID", parameters: { type: "object", properties: { ticket_id: { type: "integer", description: "Zendesk ticket ID" }, user_id: { type: "integer", description: "Zendesk user ID" }, organization_id: { type: "integer", description: "Zendesk org ID" } }, required: [] } }; (async () => { const userMessage = "Can you give me context for ticket 6?"; const initialResponse = await openai.chat.completions.create({ model: "gpt-4-0613", messages: [ { role: "user", content: userMessage } ], functions: [mcpFunction], function_call: "auto" }); const message = initialResponse.choices[0].message; if (message.function_call) { const { name, arguments: rawArgs } = message.function_call; const args = JSON.parse(rawArgs); // Call your MCP server const mcpRes = await axios.post("http://localhost:3000/context", args); const mcpData = mcpRes.data; // Feed the result back to GPT to generate a final natural reply const finalResponse = await openai.chat.completions.create({ model: "gpt-4-0613", messages: [ { role: "user", content: userMessage }, message, { role: "function", name, content: JSON.stringify(mcpData) } ] }); console.error("\n🔁 GPT-4 Final Response:\n"); console.error(finalResponse.choices[0].message.content); } else { // No function call needed console.error("\nGPT-4 Response:\n", message.content); } })();

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/larryfang/sms-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server