Skip to main content
Glama
production_readiness_gate.py19.3 kB
#!/usr/bin/env python3 """ Production Readiness Gate for MCP Integration Testing Evaluates comprehensive criteria to determine production readiness. """ import json from typing import Dict, Any, List from datetime import datetime, timedelta import logging logger = logging.getLogger(__name__) class ProductionReadinessGate: """Production readiness evaluation gate.""" def __init__(self, test_results: Dict[str, Any]): self.test_results = test_results self.criteria = { "stress_test_requirements": { "concurrent_sessions": 10, "sustained_duration": 300, # 5 minutes "error_threshold": 0.001 # 0.1% error rate under load }, "reliability_requirements": { "uptime_percentage": 99.9, "recovery_time": 30, # seconds "data_integrity": 100.0 # No data loss }, "performance_requirements": { "p95_latency": 1000, # milliseconds "p99_latency": 2000, # milliseconds "throughput_ops_per_sec": 100 }, "security_requirements": { "authentication_required": True, "encryption_enabled": True, "audit_logging": True, "vulnerability_scan_passed": True }, "operational_requirements": { "monitoring_enabled": True, "alerting_configured": True, "backup_tested": True, "documentation_complete": True, "runbook_available": True }, "compliance_requirements": { "data_privacy": True, "security_policies": True, "audit_trail": True } } async def evaluate(self) -> Dict[str, Any]: """ Evaluate production readiness criteria. Returns: Gate evaluation result """ logger.info("Evaluating production readiness gate") evaluation = { "timestamp": datetime.now().isoformat(), "criteria": self.criteria, "checks": {}, "passed": False, "recommendations": [], "risk_assessment": {} } # Check 1: Stress testing stress_check = self._check_stress_testing() evaluation["checks"]["stress_testing"] = stress_check # Check 2: Reliability reliability_check = self._check_reliability() evaluation["checks"]["reliability"] = reliability_check # Check 3: Performance performance_check = self._check_performance_requirements() evaluation["checks"]["performance"] = performance_check # Check 4: Security security_check = self._check_security_requirements() evaluation["checks"]["security"] = security_check # Check 5: Operational readiness operational_check = self._check_operational_readiness() evaluation["checks"]["operational"] = operational_check # Check 6: Compliance compliance_check = self._check_compliance() evaluation["checks"]["compliance"] = compliance_check # Risk assessment evaluation["risk_assessment"] = self._assess_risks() # Generate recommendations evaluation["recommendations"] = self._generate_recommendations(evaluation["checks"]) # Overall evaluation critical_checks = ["stress_testing", "reliability", "security"] critical_passed = all( evaluation["checks"].get(check, {}).get("passed", False) for check in critical_checks ) all_passed = all( check.get("passed", False) for check in evaluation["checks"].values() ) # Production ready if critical checks pass and risk is acceptable evaluation["passed"] = ( critical_passed and evaluation["risk_assessment"].get("overall_risk", "high") != "high" ) if not evaluation["passed"]: if not critical_passed: evaluation["decision"] = "NOT_READY_CRITICAL_FAILURES" else: evaluation["decision"] = "NOT_READY_HIGH_RISK" else: if all_passed: evaluation["decision"] = "READY_FOR_PRODUCTION" else: evaluation["decision"] = "READY_WITH_CONDITIONS" return evaluation def _check_stress_testing(self) -> Dict[str, Any]: """Check stress testing results.""" # Look for concurrent session test results stress_metrics = { "max_concurrent_tested": 0, "sustained_load_duration": 0, "error_rate_under_load": 0 } if "agents" in self.test_results: session_agent = self.test_results["agents"].get("session_testing", {}) if isinstance(session_agent, dict): for test in session_agent.get("test_results", []): if test.get("test") == "concurrent_sessions": details = test.get("details", {}) stress_metrics["max_concurrent_tested"] = test.get("target_sessions", 0) if test.get("passed"): stress_metrics["error_rate_under_load"] = 0 if test.get("test") == "session_limits": details = test.get("details", {}) stress_metrics["max_concurrent_tested"] = max( stress_metrics["max_concurrent_tested"], details.get("sessions_created", 0) ) passed = ( stress_metrics["max_concurrent_tested"] >= self.criteria["stress_test_requirements"]["concurrent_sessions"] and stress_metrics["error_rate_under_load"] <= self.criteria["stress_test_requirements"]["error_threshold"] ) return { "passed": passed, "metrics": stress_metrics, "reason": "Stress testing passed" if passed else "Insufficient stress testing" } def _check_reliability(self) -> Dict[str, Any]: """Check reliability metrics.""" reliability_metrics = { "session_recovery_tested": False, "data_integrity_verified": False, "cleanup_successful": False } if "agents" in self.test_results: # Check session recovery session_agent = self.test_results["agents"].get("session_testing", {}) if isinstance(session_agent, dict): for test in session_agent.get("test_results", []): if test.get("test") == "session_persistence": reliability_metrics["session_recovery_tested"] = test.get("passed", False) if test.get("test") == "resource_cleanup": reliability_metrics["cleanup_successful"] = test.get("passed", False) # Check data integrity file_agent = self.test_results["agents"].get("file_system", {}) if isinstance(file_agent, dict): # Look for any data corruption issues data_tests_passed = all( test.get("passed", False) for test in file_agent.get("test_results", []) if "file" in test.get("test", "") ) reliability_metrics["data_integrity_verified"] = data_tests_passed passed = all(reliability_metrics.values()) return { "passed": passed, "metrics": reliability_metrics, "reason": "Reliability requirements met" if passed else "Reliability issues detected" } def _check_performance_requirements(self) -> Dict[str, Any]: """Check performance requirements.""" performance_metrics = { "latency_acceptable": False, "throughput_tested": False, "streaming_performance": False } if "agents" in self.test_results: # Check streaming performance streaming_agent = self.test_results["agents"].get("streaming_validator", {}) if isinstance(streaming_agent, dict): for test in streaming_agent.get("test_results", []): if test.get("test") == "realtime_streaming": details = test.get("details", {}) avg_latency = details.get("avg_latency_ms", float('inf')) performance_metrics["latency_acceptable"] = ( avg_latency < self.criteria["performance_requirements"]["p95_latency"] ) performance_metrics["streaming_performance"] = test.get("passed", False) if test.get("test") == "large_streaming": details = test.get("details", {}) throughput = details.get("throughput_mbps", 0) performance_metrics["throughput_tested"] = throughput > 1.0 passed = all(performance_metrics.values()) return { "passed": passed, "metrics": performance_metrics, "reason": "Performance requirements met" if passed else "Performance below requirements" } def _check_security_requirements(self) -> Dict[str, Any]: """Check security requirements.""" security_status = { "hook_sandboxing": False, "permission_enforcement": False, "secure_cleanup": False } if "agents" in self.test_results: # Check hook security hook_agent = self.test_results["agents"].get("hook_validation", {}) if isinstance(hook_agent, dict): for test in hook_agent.get("test_results", []): if test.get("test") == "hook_security": security_status["hook_sandboxing"] = test.get("passed", False) # Check file permissions file_agent = self.test_results["agents"].get("file_system", {}) if isinstance(file_agent, dict): for test in file_agent.get("test_results", []): if test.get("test") == "permission_handling": details = test.get("details", {}) security_status["permission_enforcement"] = ( test.get("passed", False) and test.get("restricted_access_blocked", False) ) # Check secure cleanup session_agent = self.test_results["agents"].get("session_testing", {}) if isinstance(session_agent, dict): for test in session_agent.get("test_results", []): if test.get("test") == "resource_cleanup": security_status["secure_cleanup"] = test.get("passed", False) # Note: Some security requirements may need external validation external_requirements = { "authentication_required": "Requires external validation", "encryption_enabled": "Requires external validation", "audit_logging": "Requires external validation", "vulnerability_scan_passed": "Requires external validation" } passed = all(security_status.values()) return { "passed": passed, "tested_requirements": security_status, "external_requirements": external_requirements, "reason": "Security requirements partially validated" if passed else "Security issues found" } def _check_operational_readiness(self) -> Dict[str, Any]: """Check operational readiness.""" # These typically require external validation operational_status = { "error_handling_tested": False, "recovery_procedures_tested": False, "resource_limits_tested": False } if "agents" in self.test_results: # Check error handling session_agent = self.test_results["agents"].get("session_testing", {}) if isinstance(session_agent, dict): for test in session_agent.get("test_results", []): if test.get("test") == "error_handling": operational_status["error_handling_tested"] = test.get("passed", False) if test.get("test") == "session_persistence": operational_status["recovery_procedures_tested"] = test.get("passed", False) if test.get("test") == "session_limits": operational_status["resource_limits_tested"] = test.get("passed", False) external_requirements = { "monitoring_enabled": "Requires deployment validation", "alerting_configured": "Requires deployment validation", "backup_tested": "Requires operational validation", "documentation_complete": "Requires manual review", "runbook_available": "Requires manual review" } passed = all(operational_status.values()) return { "passed": passed, "tested_capabilities": operational_status, "external_requirements": external_requirements, "reason": "Basic operational capabilities tested" if passed else "Operational gaps identified" } def _check_compliance(self) -> Dict[str, Any]: """Check compliance requirements.""" compliance_indicators = { "no_sensitive_data_exposed": True, "audit_trail_capability": False } if "agents" in self.test_results: # Check for any sensitive data exposure for agent_result in self.test_results["agents"].values(): if isinstance(agent_result, dict): for test in agent_result.get("test_results", []): # Check if any test exposed sensitive data if "password" in str(test) or "secret" in str(test): compliance_indicators["no_sensitive_data_exposed"] = False # Check audit capability through hook system hook_agent = self.test_results["agents"].get("hook_validation", {}) if isinstance(hook_agent, dict): # If hooks work, audit trail is possible compliance_indicators["audit_trail_capability"] = any( test.get("passed", False) for test in hook_agent.get("test_results", []) ) external_requirements = { "data_privacy": "Requires legal review", "security_policies": "Requires policy validation" } passed = all(compliance_indicators.values()) return { "passed": passed, "compliance_indicators": compliance_indicators, "external_requirements": external_requirements, "reason": "Basic compliance requirements met" if passed else "Compliance issues identified" } def _assess_risks(self) -> Dict[str, Any]: """Assess deployment risks.""" risks = { "high": [], "medium": [], "low": [] } # Assess based on test results if "checks" in self.test_results: # High risks if not self.test_results["checks"].get("security", {}).get("passed", True): risks["high"].append("Security vulnerabilities detected") if not self.test_results["checks"].get("reliability", {}).get("passed", True): risks["high"].append("Reliability issues could cause data loss") # Medium risks if not self.test_results["checks"].get("performance", {}).get("passed", True): risks["medium"].append("Performance may degrade under load") if not self.test_results["checks"].get("operational", {}).get("passed", True): risks["medium"].append("Operational procedures incomplete") # Low risks if not self.test_results["checks"].get("compliance", {}).get("passed", True): risks["low"].append("Compliance validation incomplete") # Calculate overall risk if risks["high"]: overall_risk = "high" elif len(risks["medium"]) > 2: overall_risk = "high" elif risks["medium"]: overall_risk = "medium" else: overall_risk = "low" return { "risks": risks, "overall_risk": overall_risk, "mitigation_required": overall_risk in ["high", "medium"] } def _generate_recommendations(self, checks: Dict[str, Any]) -> List[str]: """Generate recommendations based on checks.""" recommendations = [] # Stress testing recommendations if not checks.get("stress_testing", {}).get("passed", False): recommendations.append( "Conduct extended stress testing with higher concurrent load" ) # Reliability recommendations if not checks.get("reliability", {}).get("passed", False): recommendations.append( "Implement comprehensive backup and recovery procedures" ) # Performance recommendations if not checks.get("performance", {}).get("passed", False): recommendations.append( "Optimize performance bottlenecks before production deployment" ) # Security recommendations if not checks.get("security", {}).get("passed", False): recommendations.append( "Complete security audit and penetration testing" ) else: recommendations.append( "Conduct external security validation and vulnerability scanning" ) # Operational recommendations recommendations.extend([ "Set up comprehensive monitoring and alerting", "Create detailed runbooks for common scenarios", "Establish on-call rotation and escalation procedures", "Plan and test disaster recovery procedures" ]) # Compliance recommendations if not checks.get("compliance", {}).get("passed", False): recommendations.append( "Complete compliance audit with legal team" ) return recommendations

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/krzemienski/shannon-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server