Skip to main content
Glama
deep-research-reddit-architecture.md31 kB
# Deep Research-Optimized Reddit Discovery Architecture ## Executive Summary This document presents a reimagined architecture for Reddit discovery that leverages OpenAI's deep research methodology. Instead of quick searches with basic scoring, this system conducts comprehensive, multi-phase research that can spend 5-30 minutes thoroughly analyzing Reddit communities, synthesizing insights, and producing evidence-based recommendations with full citations. ## Core Philosophy ### From Search to Research **Traditional Approach**: Quick API searches → Basic scoring → Return results **Deep Research Approach**: Research planning → Multi-phase investigation → Evidence collection → Synthesis → Comprehensive report ### Key Paradigm Shifts 1. **Time Investment**: From seconds to minutes (5-30 min research cycles) 2. **Depth Over Speed**: Thorough analysis over quick results 3. **Evidence-Based**: Every recommendation backed by specific examples 4. **Adaptive Research**: Dynamic pivoting based on discoveries 5. **Progressive Delivery**: Initial results enhanced over time ## Architecture Overview ``` ┌─────────────────────────────────────────────────────────┐ │ User Research Request │ └─────────────────────────┬───────────────────────────────┘ │ ▼ ┌─────────────────────────────────────────────────────────┐ │ Research Planning Layer │ │ ┌─────────────────┐ ┌──────────────────┐ │ │ │ Research Planner├──►│ Strategy Builder │ │ │ └─────────────────┘ └──────────────────┘ │ └─────────────────────────┬───────────────────────────────┘ │ ▼ ┌─────────────────────────────────────────────────────────┐ │ Multi-Phase Research Layer │ │ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │ │ │ Phase 1: │ │ Phase 2: │ │ Phase 3: │ │ │ │ Discovery ├──►│ Analysis ├──►│ Synthesis │ │ │ └──────────────┘ └──────────────┘ └──────────────┘ │ └─────────────────────────────────────────────────────────┘ │ ▼ ┌─────────────────────────────────────────────────────────┐ │ Evidence & Citation Layer │ │ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │ │ │ Evidence │ │ Citation │ │ Confidence │ │ │ │ Collector │ │ Tracker │ │ Calculator │ │ │ └──────────────┘ └──────────────┘ └──────────────┘ │ └─────────────────────────────────────────────────────────┘ │ ▼ ┌─────────────────────────────────────────────────────────┐ │ Comprehensive Report │ └─────────────────────────────────────────────────────────┘ ``` ## Agent Specifications ### 1. Research Planner Agent **File**: `agents/research_planner.py` **Purpose**: Creates and adapts multi-step research plans for comprehensive Reddit discovery. **Why This Agent?** Deep research requires sophisticated planning that goes beyond simple searches. The Research Planner creates adaptive, multi-phase research strategies that evolve based on discoveries. This agent: - **Decomposes Complex Queries**: Breaks down broad questions into research phases - **Plans Resource Allocation**: Budgets time and API calls across phases - **Adapts Dynamically**: Modifies plan based on intermediate findings - **Identifies Knowledge Gaps**: Recognizes what's missing and plans to fill it **Architectural Role**: - **Strategic Director**: Creates the overall research roadmap - **Resource Manager**: Allocates time budget across research phases - **Adaptation Engine**: Modifies strategy based on findings - **Quality Gatekeeper**: Ensures research meets depth requirements **Key Responsibilities**: - Generate multi-phase research plans - Allocate time budgets per phase - Define success criteria for each phase - Create backtrack strategies for poor results - Monitor research progress and adapt **Tools**: ```python @function_tool def create_research_plan(wrapper: RunContextWrapper[DeepResearchContext], query: str, time_budget: int) -> ResearchPlan: """Generate comprehensive research plan with phases and milestones.""" @function_tool def adapt_plan(wrapper: RunContextWrapper[DeepResearchContext], current_findings: List[Finding], remaining_time: int) -> AdaptedPlan: """Modify research plan based on intermediate discoveries.""" @function_tool def identify_knowledge_gaps(wrapper: RunContextWrapper[DeepResearchContext], collected_evidence: List[Evidence]) -> List[Gap]: """Identify what information is still needed.""" ``` **Model**: `gpt-4o` (complex strategic planning) **Handoffs**: - Discovery Researcher (Phase 1) - Community Analyst (Phase 2) - Content Researcher (Phase 2) - Synthesis Researcher (Phase 3) ### 2. Discovery Researcher Agent **File**: `agents/discovery_researcher.py` **Purpose**: Conducts broad discovery research to map the Reddit landscape for a topic. **Why This Agent?** Unlike simple search, discovery research explores the entire ecosystem around a topic. This agent: - **Maps Community Networks**: Discovers related and adjacent communities - **Identifies Key Players**: Finds influential subreddits and users - **Explores Variations**: Investigates different perspectives and niches - **Builds Foundation**: Creates comprehensive base for deeper analysis **Architectural Role**: - **Landscape Mapper**: Creates comprehensive view of topic on Reddit - **Breadth Provider**: Ensures no major communities are missed - **Network Analyzer**: Maps relationships between communities - **Foundation Builder**: Provides base for deeper investigation **Key Responsibilities**: - Execute broad searches with multiple strategies - Discover primary and adjacent communities - Map community relationships and overlaps - Identify key terminology and variations - Build initial evidence repository **Tools**: ```python @function_tool async def broad_discovery_search(wrapper: RunContextWrapper[DeepResearchContext], topics: List[str], strategies: List[SearchStrategy]) -> DiscoveryResults: """Execute comprehensive discovery across multiple search strategies.""" @function_tool def map_community_network(wrapper: RunContextWrapper[DeepResearchContext], communities: List[Subreddit]) -> CommunityGraph: """Map relationships and overlaps between discovered communities.""" @function_tool def identify_terminology(wrapper: RunContextWrapper[DeepResearchContext], initial_results: DiscoveryResults) -> TerminologyMap: """Extract key terms, variations, and jargon used in communities.""" ``` **Model**: `gpt-4o` (pattern recognition and mapping) **Evidence Collection**: - Community discovery paths - Search strategies used - Relationship mappings - Terminology variations found ### 3. Community Analyst Agent **File**: `agents/community_analyst.py` **Purpose**: Conducts deep analysis of discovered communities to understand culture, quality, and relevance. **Why This Agent?** Surface-level metrics don't reveal community quality or fit. The Community Analyst dives deep into each community to understand: - **Cultural Fit**: How welcoming to target audience - **Content Quality**: Depth and value of discussions - **Activity Patterns**: When and how community engages - **Governance**: Rules, moderation, and community health **Architectural Role**: - **Quality Assessor**: Evaluates community health and value - **Culture Decoder**: Understands community norms and values - **Pattern Identifier**: Recognizes activity and engagement patterns - **Fit Evaluator**: Assesses alignment with user needs **Key Responsibilities**: - Analyze community rules and culture - Evaluate content quality metrics - Assess moderator activity and governance - Study user engagement patterns - Measure beginner-friendliness or expertise level **Tools**: ```python @function_tool async def analyze_community_culture(wrapper: RunContextWrapper[DeepResearchContext], subreddit: str) -> CultureAnalysis: """Deep dive into community culture, rules, and norms.""" @function_tool def evaluate_content_quality(wrapper: RunContextWrapper[DeepResearchContext], posts: List[Post]) -> QualityMetrics: """Assess depth, helpfulness, and value of community content.""" @function_tool def measure_engagement_patterns(wrapper: RunContextWrapper[DeepResearchContext], subreddit: str, timeframe: str) -> EngagementAnalysis: """Analyze when and how users engage with the community.""" ``` **Evidence Collection**: - Exemplar posts demonstrating quality - Community rules and guidelines - Moderator actions and responses - User testimonials and feedback - Activity heatmaps and patterns ### 4. Content Researcher Agent **File**: `agents/content_researcher.py` **Purpose**: Researches actual content within communities to extract insights, resources, and recommendations. **Why This Agent?** Beyond community metrics, the actual content provides the real value. The Content Researcher: - **Extracts Knowledge**: Identifies valuable information and resources - **Finds Patterns**: Recognizes common questions and solutions - **Collects Resources**: Gathers links, guides, and recommendations - **Tracks Trends**: Identifies emerging topics and discussions **Architectural Role**: - **Knowledge Extractor**: Mines communities for valuable information - **Resource Collector**: Gathers useful links and materials - **Pattern Recognizer**: Identifies common themes and solutions - **Trend Spotter**: Finds emerging topics and discussions **Key Responsibilities**: - Extract top resources and guides - Identify frequently asked questions - Collect expert recommendations - Find success stories and case studies - Track trending topics and discussions **Tools**: ```python @function_tool async def extract_top_resources(wrapper: RunContextWrapper[DeepResearchContext], subreddit: str, topic: str) -> List[Resource]: """Extract most valuable resources mentioned in community.""" @function_tool def analyze_discussion_patterns(wrapper: RunContextWrapper[DeepResearchContext], posts: List[Post]) -> DiscussionPatterns: """Identify common questions, problems, and solutions.""" @function_tool def collect_expert_insights(wrapper: RunContextWrapper[DeepResearchContext], subreddit: str) -> List[ExpertInsight]: """Find and extract insights from recognized experts.""" ``` **Evidence Collection**: - Direct links to valuable posts - Quoted expert responses - Resource compilation lists - Success story examples - FAQ patterns with answers ### 5. Trend Analyst Agent **File**: `agents/trend_analyst.py` **Purpose**: Analyzes temporal patterns, emerging trends, and community evolution. **Why This Agent?** Static analysis misses community dynamics. The Trend Analyst provides: - **Temporal Intelligence**: How communities change over time - **Emerging Topics**: What's gaining traction - **Declining Interests**: What's losing relevance - **Seasonal Patterns**: Recurring themes and cycles **Architectural Role**: - **Temporal Analyzer**: Understands community evolution - **Trend Identifier**: Spots emerging and declining topics - **Pattern Predictor**: Anticipates future community directions - **Historical Context Provider**: Adds time-based perspective **Key Responsibilities**: - Track topic popularity over time - Identify emerging communities - Analyze seasonal patterns - Compare historical vs current activity - Predict future trends **Tools**: ```python @function_tool def analyze_temporal_patterns(wrapper: RunContextWrapper[DeepResearchContext], subreddit: str, timeframes: List[str]) -> TemporalAnalysis: """Analyze how community and topics evolve over time.""" @function_tool def identify_emerging_topics(wrapper: RunContextWrapper[DeepResearchContext], communities: List[str]) -> List[EmergingTopic]: """Find topics gaining unusual traction recently.""" @function_tool def compare_historical_activity(wrapper: RunContextWrapper[DeepResearchContext], subreddit: str, periods: List[Period]) -> ActivityComparison: """Compare activity patterns across different time periods.""" ``` ### 6. Evidence Collector Agent **File**: `agents/evidence_collector.py` **Purpose**: Systematically collects, verifies, and organizes evidence to support all findings. **Why This Agent?** Deep research requires rigorous evidence. The Evidence Collector: - **Maintains Chain of Evidence**: Links every claim to sources - **Verifies Information**: Cross-references claims - **Organizes Proof**: Structures evidence for easy reference - **Tracks Confidence**: Rates evidence quality **Architectural Role**: - **Evidence Manager**: Central repository for all proof - **Verification Engine**: Validates claims across sources - **Citation Builder**: Creates proper references - **Confidence Assessor**: Rates evidence strength **Key Responsibilities**: - Collect evidence for each finding - Verify claims across multiple sources - Organize evidence by category - Track citation sources - Rate evidence confidence **Tools**: ```python @function_tool def collect_evidence(wrapper: RunContextWrapper[DeepResearchContext], finding: Finding) -> List[Evidence]: """Collect supporting evidence for a finding.""" @function_tool def verify_claim(wrapper: RunContextWrapper[DeepResearchContext], claim: Claim) -> VerificationResult: """Cross-reference claim across multiple sources.""" @function_tool def rate_evidence_strength(wrapper: RunContextWrapper[DeepResearchContext], evidence: Evidence) -> ConfidenceRating: """Assess the strength and reliability of evidence.""" ``` ### 7. Synthesis Researcher Agent **File**: `agents/synthesis_researcher.py` **Purpose**: Synthesizes all research into comprehensive, actionable insights with full documentation. **Why This Agent?** Raw research needs expert synthesis. The Synthesis Researcher: - **Creates Narratives**: Weaves findings into coherent stories - **Generates Insights**: Derives non-obvious conclusions - **Builds Recommendations**: Creates actionable advice - **Documents Thoroughly**: Provides complete citations **Architectural Role**: - **Master Synthesizer**: Combines all research threads - **Insight Generator**: Creates value from raw data - **Recommendation Engine**: Produces actionable guidance - **Report Builder**: Creates comprehensive documentation **Key Responsibilities**: - Synthesize findings across all phases - Generate key insights and patterns - Create actionable recommendations - Build comprehensive report - Include all citations and evidence **Output Type**: ```python class DeepResearchReport(BaseModel): executive_summary: str research_methodology: ResearchMethodology key_findings: List[Finding] detailed_analysis: DetailedAnalysis recommendations: List[Recommendation] evidence_repository: EvidenceRepository citations: List[Citation] confidence_assessment: ConfidenceReport research_metrics: ResearchMetrics ``` **Model**: `gpt-4o` (complex synthesis and insight generation) ### 8. Backtrack Coordinator Agent **File**: `agents/backtrack_coordinator.py` **Purpose**: Manages research pivots when initial strategies don't yield quality results. **Why This Agent?** Research often requires course correction. The Backtrack Coordinator: - **Recognizes Dead Ends**: Identifies when to pivot - **Manages State**: Preserves valuable findings while changing direction - **Optimizes Pivots**: Chooses best alternative paths - **Learns from Failures**: Improves future research **Architectural Role**: - **Pivot Manager**: Handles strategy changes - **State Preserver**: Maintains valuable findings - **Path Optimizer**: Finds best alternative routes - **Learning Engine**: Improves from failed attempts **Tools**: ```python @function_tool def evaluate_research_quality(wrapper: RunContextWrapper[DeepResearchContext], current_findings: List[Finding]) -> QualityAssessment: """Assess if current research path is yielding quality results.""" @function_tool def generate_pivot_strategies(wrapper: RunContextWrapper[DeepResearchContext], failed_approach: ResearchPath) -> List[AlternativePath]: """Generate alternative research strategies.""" @function_tool def preserve_valuable_findings(wrapper: RunContextWrapper[DeepResearchContext], findings: List[Finding]) -> PreservedFindings: """Save valuable discoveries before pivoting.""" ``` ## Research Phases ### Phase 1: Discovery (5-10 minutes) **Objective**: Map the complete landscape of relevant Reddit communities **Activities**: 1. Broad keyword searches with variations 2. Related community discovery 3. Network mapping 4. Terminology extraction 5. Initial quality assessment **Deliverables**: - Community map with relationships - Initial relevance scores - Terminology glossary - Research refinement suggestions ### Phase 2: Deep Analysis (10-15 minutes) **Objective**: Thoroughly analyze promising communities and content **Activities**: 1. Community culture analysis 2. Content quality evaluation 3. User engagement study 4. Resource extraction 5. Trend identification **Deliverables**: - Detailed community profiles - Quality assessments with evidence - Resource compilations - Trend reports - Expert insights ### Phase 3: Synthesis (5-10 minutes) **Objective**: Transform research into actionable insights and recommendations **Activities**: 1. Cross-community pattern analysis 2. Insight generation 3. Recommendation formulation 4. Evidence compilation 5. Report generation **Deliverables**: - Executive summary - Detailed findings with citations - Actionable recommendations - Evidence repository - Confidence assessments ## Context Models ### Deep Research Context ```python from dataclasses import dataclass, field from typing import Dict, List, Any, Optional import praw @dataclass class DeepResearchContext: # Core components reddit_client: praw.Reddit research_plan: ResearchPlan time_budget: TimeBudget # Research state current_phase: ResearchPhase completed_phases: List[ResearchPhase] = field(default_factory=list) backtrack_stack: List[ResearchPath] = field(default_factory=list) # Evidence management evidence_repository: EvidenceRepository = field(default_factory=EvidenceRepository) citation_tracker: CitationTracker = field(default_factory=CitationTracker) # Findings and insights discoveries: List[Discovery] = field(default_factory=list) insights: List[Insight] = field(default_factory=list) patterns: List[Pattern] = field(default_factory=list) # Performance tracking api_calls: int = 0 research_metrics: ResearchMetrics = field(default_factory=ResearchMetrics) # Adaptive elements learned_patterns: Dict[str, Any] = field(default_factory=dict) optimization_hints: List[str] = field(default_factory=list) @dataclass class ResearchPlan: query: str objectives: List[ResearchObjective] phases: List[PlannedPhase] success_criteria: SuccessCriteria time_allocation: TimeAllocation backtrack_triggers: List[BacktrackTrigger] @dataclass class TimeBudget: total_minutes: int elapsed_minutes: float = 0 phase_budgets: Dict[str, float] = field(default_factory=dict) def remaining(self) -> float: return self.total_minutes - self.elapsed_minutes def can_continue(self) -> bool: return self.remaining() > 1 # At least 1 minute left @dataclass class Evidence: finding: str source: str url: str confidence: float timestamp: float context: str verification_status: str @dataclass class Citation: text: str source: str url: str author: Optional[str] date: Optional[str] relevance_score: float ``` ## Progressive Result Delivery ### Immediate Results (0-30 seconds) - Basic discovery from cache - Previous research on similar topics - Quick relevance assessment ### Early Results (1-3 minutes) - Initial community discoveries - Basic scoring and ranking - Preliminary recommendations ### Intermediate Results (3-10 minutes) - Detailed community analysis - Quality assessments - Resource collections - Trend identification ### Final Results (10-30 minutes) - Complete synthesis - Full evidence documentation - Comprehensive recommendations - Confidence assessments - Future research suggestions ## Implementation Strategy ### Entry Point ```python # tools/deep_research_reddit.py from agents import Agent, Runner, RunConfig from src.agents.research_planner import research_planner from src.models.deep_research_context import DeepResearchContext async def deep_research_reddit( query: str, time_budget_minutes: int = 10, research_depth: Literal["standard", "comprehensive", "exhaustive"] = "standard", progressive_updates: bool = True ) -> DeepResearchReport: """ Conduct deep research on Reddit communities and topics. Args: query: Research question or topic time_budget_minutes: Maximum time for research (5-30) research_depth: Level of research thoroughness progressive_updates: Deliver results progressively Returns: Comprehensive research report with citations """ # Initialize context context = DeepResearchContext( reddit_client=get_reddit_client(), time_budget=TimeBudget(total_minutes=time_budget_minutes), research_plan=ResearchPlan(query=query) ) # Start with research planner result = await Runner.run( starting_agent=research_planner, input=f"Deep research request: {query}", context=context, run_config=RunConfig( max_turns=100, # Allow extensive research workflow_name="Deep Reddit Research", trace_metadata={ "query": query, "depth": research_depth, "time_budget": time_budget_minutes } ) ) return result.final_output ``` ## Advantages Over Traditional Approach ### Quality Improvements 1. **Evidence-Based**: Every finding backed by specific examples 2. **Comprehensive Coverage**: Explores entire topic landscape 3. **Nuanced Understanding**: Goes beyond surface metrics 4. **Verified Information**: Cross-references claims 5. **Contextual Intelligence**: Understands community dynamics ### Capability Enhancements 1. **Adaptive Research**: Pivots based on discoveries 2. **Pattern Recognition**: Identifies non-obvious connections 3. **Trend Analysis**: Temporal understanding 4. **Resource Compilation**: Gathers valuable materials 5. **Expert Extraction**: Finds and cites authorities ### User Benefits 1. **Time Savings**: Hours of research in minutes 2. **Better Decisions**: Evidence-based recommendations 3. **Deeper Insights**: Patterns humans might miss 4. **Complete Documentation**: Full citation trail 5. **Progressive Results**: Value delivered incrementally ## Performance Considerations ### API Management ```python class APIBudget: def __init__(self, max_calls_per_minute: int = 60): self.max_calls_per_minute = max_calls_per_minute self.calls_this_minute = 0 self.minute_start = time.time() async def wait_if_needed(self): """Implement intelligent rate limiting.""" if self.calls_this_minute >= self.max_calls_per_minute: wait_time = 60 - (time.time() - self.minute_start) if wait_time > 0: await asyncio.sleep(wait_time) self.reset_minute() def reset_minute(self): self.calls_this_minute = 0 self.minute_start = time.time() ``` ### Caching Strategy ```python class ResearchCache: def __init__(self, ttl_minutes: int = 60): self.cache = {} self.ttl = ttl_minutes * 60 def get_or_fetch(self, key: str, fetcher: Callable): """Cache research components for reuse.""" if key in self.cache: entry = self.cache[key] if time.time() - entry['timestamp'] < self.ttl: return entry['data'] data = fetcher() self.cache[key] = { 'data': data, 'timestamp': time.time() } return data ``` ### Parallel Execution ```python async def parallel_community_analysis(communities: List[str], context: DeepResearchContext): """Analyze multiple communities in parallel.""" tasks = [] for community in communities: task = asyncio.create_task( analyze_community(community, context) ) tasks.append(task) results = await asyncio.gather(*tasks) return results ``` ## Migration Path ### Phase 1: Parallel Systems (Weeks 1-2) - Build deep research system alongside existing - Share base components (Reddit client, models) - Test with subset of queries ### Phase 2: Progressive Enhancement (Weeks 3-4) - Add deep research as optional mode - Default to quick discovery for simple queries - Activate deep research for complex questions ### Phase 3: Integration (Weeks 5-6) - Unified entry point with intelligent routing - Automatic depth selection based on query - Seamless fallback between modes ### Phase 4: Optimization (Weeks 7-8) - Performance tuning - Cache optimization - Cost analysis and budgeting ## Example Research Scenarios ### Scenario 1: "Best Python communities for data science beginners" **Research Plan**: 1. **Discovery Phase**: Find all Python and data science communities 2. **Analysis Phase**: - Evaluate beginner-friendliness - Assess learning resource quality - Analyze mentor availability 3. **Synthesis Phase**: - Rank communities by criteria - Create learning path recommendations - Compile resource library **Expected Output**: - Top 5 communities with detailed justifications - Learning progression path - Curated resource collection - Weekly activity schedule recommendations - Key people to follow ### Scenario 2: "Emerging AI safety discussions on Reddit" **Research Plan**: 1. **Discovery Phase**: Map AI safety ecosystem 2. **Trend Analysis Phase**: - Track topic evolution - Identify emerging concerns - Find thought leaders 3. **Synthesis Phase**: - Summarize key debates - Highlight consensus/disagreements - Predict future discussions **Expected Output**: - Current state of AI safety discourse - Emerging topics and concerns - Key voices and their positions - Community sentiment analysis - Recommended reading order ## Future Enhancements ### Near-term (3-6 months) 1. **Visual Analysis**: Process images and infographics 2. **Sentiment Analysis**: Deeper emotional understanding 3. **User Profiling**: Analyze influential users 4. **Cross-Platform**: Extend beyond Reddit ### Medium-term (6-12 months) 1. **Predictive Analytics**: Forecast community trends 2. **Personalization**: Learn user preferences 3. **Real-time Monitoring**: Continuous research updates 4. **Integration APIs**: Connect with other tools ### Long-term (12+ months) 1. **Autonomous Research**: Self-directed exploration 2. **Knowledge Graph**: Build comprehensive topic maps 3. **Research Collaboration**: Multi-agent research teams 4. **Scientific Method**: Hypothesis testing and validation ## Conclusion This deep research architecture transforms Reddit discovery from a simple search tool into a comprehensive research system. By embracing longer execution times and multi-phase investigation, we can deliver insights that match or exceed human research quality while maintaining the speed advantage of automation. The key innovation is treating Reddit discovery as a research problem rather than a search problem. This shift enables: - Thorough understanding over quick results - Evidence-based recommendations over assumptions - Adaptive strategies over fixed pipelines - Comprehensive insights over surface metrics This architecture positions the Reddit discovery tool as a true research assistant capable of conducting hours of human-equivalent research in minutes, with full documentation and citations for every finding.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/king-of-the-grackles/dialog-reddit-tools'

If you have feedback or need assistance with the MCP directory API, please join our Discord server