# Deep Research-Optimized Reddit Discovery Architecture
## Executive Summary
This document presents a reimagined architecture for Reddit discovery that leverages OpenAI's deep research methodology. Instead of quick searches with basic scoring, this system conducts comprehensive, multi-phase research that can spend 5-30 minutes thoroughly analyzing Reddit communities, synthesizing insights, and producing evidence-based recommendations with full citations.
## Core Philosophy
### From Search to Research
**Traditional Approach**: Quick API searches → Basic scoring → Return results
**Deep Research Approach**: Research planning → Multi-phase investigation → Evidence collection → Synthesis → Comprehensive report
### Key Paradigm Shifts
1. **Time Investment**: From seconds to minutes (5-30 min research cycles)
2. **Depth Over Speed**: Thorough analysis over quick results
3. **Evidence-Based**: Every recommendation backed by specific examples
4. **Adaptive Research**: Dynamic pivoting based on discoveries
5. **Progressive Delivery**: Initial results enhanced over time
## Architecture Overview
```
┌─────────────────────────────────────────────────────────┐
│ User Research Request │
└─────────────────────────┬───────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────┐
│ Research Planning Layer │
│ ┌─────────────────┐ ┌──────────────────┐ │
│ │ Research Planner├──►│ Strategy Builder │ │
│ └─────────────────┘ └──────────────────┘ │
└─────────────────────────┬───────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────┐
│ Multi-Phase Research Layer │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ Phase 1: │ │ Phase 2: │ │ Phase 3: │ │
│ │ Discovery ├──►│ Analysis ├──►│ Synthesis │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
└─────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────┐
│ Evidence & Citation Layer │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ Evidence │ │ Citation │ │ Confidence │ │
│ │ Collector │ │ Tracker │ │ Calculator │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
└─────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────┐
│ Comprehensive Report │
└─────────────────────────────────────────────────────────┘
```
## Agent Specifications
### 1. Research Planner Agent
**File**: `agents/research_planner.py`
**Purpose**: Creates and adapts multi-step research plans for comprehensive Reddit discovery.
**Why This Agent?**
Deep research requires sophisticated planning that goes beyond simple searches. The Research Planner creates adaptive, multi-phase research strategies that evolve based on discoveries. This agent:
- **Decomposes Complex Queries**: Breaks down broad questions into research phases
- **Plans Resource Allocation**: Budgets time and API calls across phases
- **Adapts Dynamically**: Modifies plan based on intermediate findings
- **Identifies Knowledge Gaps**: Recognizes what's missing and plans to fill it
**Architectural Role**:
- **Strategic Director**: Creates the overall research roadmap
- **Resource Manager**: Allocates time budget across research phases
- **Adaptation Engine**: Modifies strategy based on findings
- **Quality Gatekeeper**: Ensures research meets depth requirements
**Key Responsibilities**:
- Generate multi-phase research plans
- Allocate time budgets per phase
- Define success criteria for each phase
- Create backtrack strategies for poor results
- Monitor research progress and adapt
**Tools**:
```python
@function_tool
def create_research_plan(wrapper: RunContextWrapper[DeepResearchContext],
query: str, time_budget: int) -> ResearchPlan:
"""Generate comprehensive research plan with phases and milestones."""
@function_tool
def adapt_plan(wrapper: RunContextWrapper[DeepResearchContext],
current_findings: List[Finding],
remaining_time: int) -> AdaptedPlan:
"""Modify research plan based on intermediate discoveries."""
@function_tool
def identify_knowledge_gaps(wrapper: RunContextWrapper[DeepResearchContext],
collected_evidence: List[Evidence]) -> List[Gap]:
"""Identify what information is still needed."""
```
**Model**: `gpt-4o` (complex strategic planning)
**Handoffs**:
- Discovery Researcher (Phase 1)
- Community Analyst (Phase 2)
- Content Researcher (Phase 2)
- Synthesis Researcher (Phase 3)
### 2. Discovery Researcher Agent
**File**: `agents/discovery_researcher.py`
**Purpose**: Conducts broad discovery research to map the Reddit landscape for a topic.
**Why This Agent?**
Unlike simple search, discovery research explores the entire ecosystem around a topic. This agent:
- **Maps Community Networks**: Discovers related and adjacent communities
- **Identifies Key Players**: Finds influential subreddits and users
- **Explores Variations**: Investigates different perspectives and niches
- **Builds Foundation**: Creates comprehensive base for deeper analysis
**Architectural Role**:
- **Landscape Mapper**: Creates comprehensive view of topic on Reddit
- **Breadth Provider**: Ensures no major communities are missed
- **Network Analyzer**: Maps relationships between communities
- **Foundation Builder**: Provides base for deeper investigation
**Key Responsibilities**:
- Execute broad searches with multiple strategies
- Discover primary and adjacent communities
- Map community relationships and overlaps
- Identify key terminology and variations
- Build initial evidence repository
**Tools**:
```python
@function_tool
async def broad_discovery_search(wrapper: RunContextWrapper[DeepResearchContext],
topics: List[str],
strategies: List[SearchStrategy]) -> DiscoveryResults:
"""Execute comprehensive discovery across multiple search strategies."""
@function_tool
def map_community_network(wrapper: RunContextWrapper[DeepResearchContext],
communities: List[Subreddit]) -> CommunityGraph:
"""Map relationships and overlaps between discovered communities."""
@function_tool
def identify_terminology(wrapper: RunContextWrapper[DeepResearchContext],
initial_results: DiscoveryResults) -> TerminologyMap:
"""Extract key terms, variations, and jargon used in communities."""
```
**Model**: `gpt-4o` (pattern recognition and mapping)
**Evidence Collection**:
- Community discovery paths
- Search strategies used
- Relationship mappings
- Terminology variations found
### 3. Community Analyst Agent
**File**: `agents/community_analyst.py`
**Purpose**: Conducts deep analysis of discovered communities to understand culture, quality, and relevance.
**Why This Agent?**
Surface-level metrics don't reveal community quality or fit. The Community Analyst dives deep into each community to understand:
- **Cultural Fit**: How welcoming to target audience
- **Content Quality**: Depth and value of discussions
- **Activity Patterns**: When and how community engages
- **Governance**: Rules, moderation, and community health
**Architectural Role**:
- **Quality Assessor**: Evaluates community health and value
- **Culture Decoder**: Understands community norms and values
- **Pattern Identifier**: Recognizes activity and engagement patterns
- **Fit Evaluator**: Assesses alignment with user needs
**Key Responsibilities**:
- Analyze community rules and culture
- Evaluate content quality metrics
- Assess moderator activity and governance
- Study user engagement patterns
- Measure beginner-friendliness or expertise level
**Tools**:
```python
@function_tool
async def analyze_community_culture(wrapper: RunContextWrapper[DeepResearchContext],
subreddit: str) -> CultureAnalysis:
"""Deep dive into community culture, rules, and norms."""
@function_tool
def evaluate_content_quality(wrapper: RunContextWrapper[DeepResearchContext],
posts: List[Post]) -> QualityMetrics:
"""Assess depth, helpfulness, and value of community content."""
@function_tool
def measure_engagement_patterns(wrapper: RunContextWrapper[DeepResearchContext],
subreddit: str,
timeframe: str) -> EngagementAnalysis:
"""Analyze when and how users engage with the community."""
```
**Evidence Collection**:
- Exemplar posts demonstrating quality
- Community rules and guidelines
- Moderator actions and responses
- User testimonials and feedback
- Activity heatmaps and patterns
### 4. Content Researcher Agent
**File**: `agents/content_researcher.py`
**Purpose**: Researches actual content within communities to extract insights, resources, and recommendations.
**Why This Agent?**
Beyond community metrics, the actual content provides the real value. The Content Researcher:
- **Extracts Knowledge**: Identifies valuable information and resources
- **Finds Patterns**: Recognizes common questions and solutions
- **Collects Resources**: Gathers links, guides, and recommendations
- **Tracks Trends**: Identifies emerging topics and discussions
**Architectural Role**:
- **Knowledge Extractor**: Mines communities for valuable information
- **Resource Collector**: Gathers useful links and materials
- **Pattern Recognizer**: Identifies common themes and solutions
- **Trend Spotter**: Finds emerging topics and discussions
**Key Responsibilities**:
- Extract top resources and guides
- Identify frequently asked questions
- Collect expert recommendations
- Find success stories and case studies
- Track trending topics and discussions
**Tools**:
```python
@function_tool
async def extract_top_resources(wrapper: RunContextWrapper[DeepResearchContext],
subreddit: str,
topic: str) -> List[Resource]:
"""Extract most valuable resources mentioned in community."""
@function_tool
def analyze_discussion_patterns(wrapper: RunContextWrapper[DeepResearchContext],
posts: List[Post]) -> DiscussionPatterns:
"""Identify common questions, problems, and solutions."""
@function_tool
def collect_expert_insights(wrapper: RunContextWrapper[DeepResearchContext],
subreddit: str) -> List[ExpertInsight]:
"""Find and extract insights from recognized experts."""
```
**Evidence Collection**:
- Direct links to valuable posts
- Quoted expert responses
- Resource compilation lists
- Success story examples
- FAQ patterns with answers
### 5. Trend Analyst Agent
**File**: `agents/trend_analyst.py`
**Purpose**: Analyzes temporal patterns, emerging trends, and community evolution.
**Why This Agent?**
Static analysis misses community dynamics. The Trend Analyst provides:
- **Temporal Intelligence**: How communities change over time
- **Emerging Topics**: What's gaining traction
- **Declining Interests**: What's losing relevance
- **Seasonal Patterns**: Recurring themes and cycles
**Architectural Role**:
- **Temporal Analyzer**: Understands community evolution
- **Trend Identifier**: Spots emerging and declining topics
- **Pattern Predictor**: Anticipates future community directions
- **Historical Context Provider**: Adds time-based perspective
**Key Responsibilities**:
- Track topic popularity over time
- Identify emerging communities
- Analyze seasonal patterns
- Compare historical vs current activity
- Predict future trends
**Tools**:
```python
@function_tool
def analyze_temporal_patterns(wrapper: RunContextWrapper[DeepResearchContext],
subreddit: str,
timeframes: List[str]) -> TemporalAnalysis:
"""Analyze how community and topics evolve over time."""
@function_tool
def identify_emerging_topics(wrapper: RunContextWrapper[DeepResearchContext],
communities: List[str]) -> List[EmergingTopic]:
"""Find topics gaining unusual traction recently."""
@function_tool
def compare_historical_activity(wrapper: RunContextWrapper[DeepResearchContext],
subreddit: str,
periods: List[Period]) -> ActivityComparison:
"""Compare activity patterns across different time periods."""
```
### 6. Evidence Collector Agent
**File**: `agents/evidence_collector.py`
**Purpose**: Systematically collects, verifies, and organizes evidence to support all findings.
**Why This Agent?**
Deep research requires rigorous evidence. The Evidence Collector:
- **Maintains Chain of Evidence**: Links every claim to sources
- **Verifies Information**: Cross-references claims
- **Organizes Proof**: Structures evidence for easy reference
- **Tracks Confidence**: Rates evidence quality
**Architectural Role**:
- **Evidence Manager**: Central repository for all proof
- **Verification Engine**: Validates claims across sources
- **Citation Builder**: Creates proper references
- **Confidence Assessor**: Rates evidence strength
**Key Responsibilities**:
- Collect evidence for each finding
- Verify claims across multiple sources
- Organize evidence by category
- Track citation sources
- Rate evidence confidence
**Tools**:
```python
@function_tool
def collect_evidence(wrapper: RunContextWrapper[DeepResearchContext],
finding: Finding) -> List[Evidence]:
"""Collect supporting evidence for a finding."""
@function_tool
def verify_claim(wrapper: RunContextWrapper[DeepResearchContext],
claim: Claim) -> VerificationResult:
"""Cross-reference claim across multiple sources."""
@function_tool
def rate_evidence_strength(wrapper: RunContextWrapper[DeepResearchContext],
evidence: Evidence) -> ConfidenceRating:
"""Assess the strength and reliability of evidence."""
```
### 7. Synthesis Researcher Agent
**File**: `agents/synthesis_researcher.py`
**Purpose**: Synthesizes all research into comprehensive, actionable insights with full documentation.
**Why This Agent?**
Raw research needs expert synthesis. The Synthesis Researcher:
- **Creates Narratives**: Weaves findings into coherent stories
- **Generates Insights**: Derives non-obvious conclusions
- **Builds Recommendations**: Creates actionable advice
- **Documents Thoroughly**: Provides complete citations
**Architectural Role**:
- **Master Synthesizer**: Combines all research threads
- **Insight Generator**: Creates value from raw data
- **Recommendation Engine**: Produces actionable guidance
- **Report Builder**: Creates comprehensive documentation
**Key Responsibilities**:
- Synthesize findings across all phases
- Generate key insights and patterns
- Create actionable recommendations
- Build comprehensive report
- Include all citations and evidence
**Output Type**:
```python
class DeepResearchReport(BaseModel):
executive_summary: str
research_methodology: ResearchMethodology
key_findings: List[Finding]
detailed_analysis: DetailedAnalysis
recommendations: List[Recommendation]
evidence_repository: EvidenceRepository
citations: List[Citation]
confidence_assessment: ConfidenceReport
research_metrics: ResearchMetrics
```
**Model**: `gpt-4o` (complex synthesis and insight generation)
### 8. Backtrack Coordinator Agent
**File**: `agents/backtrack_coordinator.py`
**Purpose**: Manages research pivots when initial strategies don't yield quality results.
**Why This Agent?**
Research often requires course correction. The Backtrack Coordinator:
- **Recognizes Dead Ends**: Identifies when to pivot
- **Manages State**: Preserves valuable findings while changing direction
- **Optimizes Pivots**: Chooses best alternative paths
- **Learns from Failures**: Improves future research
**Architectural Role**:
- **Pivot Manager**: Handles strategy changes
- **State Preserver**: Maintains valuable findings
- **Path Optimizer**: Finds best alternative routes
- **Learning Engine**: Improves from failed attempts
**Tools**:
```python
@function_tool
def evaluate_research_quality(wrapper: RunContextWrapper[DeepResearchContext],
current_findings: List[Finding]) -> QualityAssessment:
"""Assess if current research path is yielding quality results."""
@function_tool
def generate_pivot_strategies(wrapper: RunContextWrapper[DeepResearchContext],
failed_approach: ResearchPath) -> List[AlternativePath]:
"""Generate alternative research strategies."""
@function_tool
def preserve_valuable_findings(wrapper: RunContextWrapper[DeepResearchContext],
findings: List[Finding]) -> PreservedFindings:
"""Save valuable discoveries before pivoting."""
```
## Research Phases
### Phase 1: Discovery (5-10 minutes)
**Objective**: Map the complete landscape of relevant Reddit communities
**Activities**:
1. Broad keyword searches with variations
2. Related community discovery
3. Network mapping
4. Terminology extraction
5. Initial quality assessment
**Deliverables**:
- Community map with relationships
- Initial relevance scores
- Terminology glossary
- Research refinement suggestions
### Phase 2: Deep Analysis (10-15 minutes)
**Objective**: Thoroughly analyze promising communities and content
**Activities**:
1. Community culture analysis
2. Content quality evaluation
3. User engagement study
4. Resource extraction
5. Trend identification
**Deliverables**:
- Detailed community profiles
- Quality assessments with evidence
- Resource compilations
- Trend reports
- Expert insights
### Phase 3: Synthesis (5-10 minutes)
**Objective**: Transform research into actionable insights and recommendations
**Activities**:
1. Cross-community pattern analysis
2. Insight generation
3. Recommendation formulation
4. Evidence compilation
5. Report generation
**Deliverables**:
- Executive summary
- Detailed findings with citations
- Actionable recommendations
- Evidence repository
- Confidence assessments
## Context Models
### Deep Research Context
```python
from dataclasses import dataclass, field
from typing import Dict, List, Any, Optional
import praw
@dataclass
class DeepResearchContext:
# Core components
reddit_client: praw.Reddit
research_plan: ResearchPlan
time_budget: TimeBudget
# Research state
current_phase: ResearchPhase
completed_phases: List[ResearchPhase] = field(default_factory=list)
backtrack_stack: List[ResearchPath] = field(default_factory=list)
# Evidence management
evidence_repository: EvidenceRepository = field(default_factory=EvidenceRepository)
citation_tracker: CitationTracker = field(default_factory=CitationTracker)
# Findings and insights
discoveries: List[Discovery] = field(default_factory=list)
insights: List[Insight] = field(default_factory=list)
patterns: List[Pattern] = field(default_factory=list)
# Performance tracking
api_calls: int = 0
research_metrics: ResearchMetrics = field(default_factory=ResearchMetrics)
# Adaptive elements
learned_patterns: Dict[str, Any] = field(default_factory=dict)
optimization_hints: List[str] = field(default_factory=list)
@dataclass
class ResearchPlan:
query: str
objectives: List[ResearchObjective]
phases: List[PlannedPhase]
success_criteria: SuccessCriteria
time_allocation: TimeAllocation
backtrack_triggers: List[BacktrackTrigger]
@dataclass
class TimeBudget:
total_minutes: int
elapsed_minutes: float = 0
phase_budgets: Dict[str, float] = field(default_factory=dict)
def remaining(self) -> float:
return self.total_minutes - self.elapsed_minutes
def can_continue(self) -> bool:
return self.remaining() > 1 # At least 1 minute left
@dataclass
class Evidence:
finding: str
source: str
url: str
confidence: float
timestamp: float
context: str
verification_status: str
@dataclass
class Citation:
text: str
source: str
url: str
author: Optional[str]
date: Optional[str]
relevance_score: float
```
## Progressive Result Delivery
### Immediate Results (0-30 seconds)
- Basic discovery from cache
- Previous research on similar topics
- Quick relevance assessment
### Early Results (1-3 minutes)
- Initial community discoveries
- Basic scoring and ranking
- Preliminary recommendations
### Intermediate Results (3-10 minutes)
- Detailed community analysis
- Quality assessments
- Resource collections
- Trend identification
### Final Results (10-30 minutes)
- Complete synthesis
- Full evidence documentation
- Comprehensive recommendations
- Confidence assessments
- Future research suggestions
## Implementation Strategy
### Entry Point
```python
# tools/deep_research_reddit.py
from agents import Agent, Runner, RunConfig
from src.agents.research_planner import research_planner
from src.models.deep_research_context import DeepResearchContext
async def deep_research_reddit(
query: str,
time_budget_minutes: int = 10,
research_depth: Literal["standard", "comprehensive", "exhaustive"] = "standard",
progressive_updates: bool = True
) -> DeepResearchReport:
"""
Conduct deep research on Reddit communities and topics.
Args:
query: Research question or topic
time_budget_minutes: Maximum time for research (5-30)
research_depth: Level of research thoroughness
progressive_updates: Deliver results progressively
Returns:
Comprehensive research report with citations
"""
# Initialize context
context = DeepResearchContext(
reddit_client=get_reddit_client(),
time_budget=TimeBudget(total_minutes=time_budget_minutes),
research_plan=ResearchPlan(query=query)
)
# Start with research planner
result = await Runner.run(
starting_agent=research_planner,
input=f"Deep research request: {query}",
context=context,
run_config=RunConfig(
max_turns=100, # Allow extensive research
workflow_name="Deep Reddit Research",
trace_metadata={
"query": query,
"depth": research_depth,
"time_budget": time_budget_minutes
}
)
)
return result.final_output
```
## Advantages Over Traditional Approach
### Quality Improvements
1. **Evidence-Based**: Every finding backed by specific examples
2. **Comprehensive Coverage**: Explores entire topic landscape
3. **Nuanced Understanding**: Goes beyond surface metrics
4. **Verified Information**: Cross-references claims
5. **Contextual Intelligence**: Understands community dynamics
### Capability Enhancements
1. **Adaptive Research**: Pivots based on discoveries
2. **Pattern Recognition**: Identifies non-obvious connections
3. **Trend Analysis**: Temporal understanding
4. **Resource Compilation**: Gathers valuable materials
5. **Expert Extraction**: Finds and cites authorities
### User Benefits
1. **Time Savings**: Hours of research in minutes
2. **Better Decisions**: Evidence-based recommendations
3. **Deeper Insights**: Patterns humans might miss
4. **Complete Documentation**: Full citation trail
5. **Progressive Results**: Value delivered incrementally
## Performance Considerations
### API Management
```python
class APIBudget:
def __init__(self, max_calls_per_minute: int = 60):
self.max_calls_per_minute = max_calls_per_minute
self.calls_this_minute = 0
self.minute_start = time.time()
async def wait_if_needed(self):
"""Implement intelligent rate limiting."""
if self.calls_this_minute >= self.max_calls_per_minute:
wait_time = 60 - (time.time() - self.minute_start)
if wait_time > 0:
await asyncio.sleep(wait_time)
self.reset_minute()
def reset_minute(self):
self.calls_this_minute = 0
self.minute_start = time.time()
```
### Caching Strategy
```python
class ResearchCache:
def __init__(self, ttl_minutes: int = 60):
self.cache = {}
self.ttl = ttl_minutes * 60
def get_or_fetch(self, key: str, fetcher: Callable):
"""Cache research components for reuse."""
if key in self.cache:
entry = self.cache[key]
if time.time() - entry['timestamp'] < self.ttl:
return entry['data']
data = fetcher()
self.cache[key] = {
'data': data,
'timestamp': time.time()
}
return data
```
### Parallel Execution
```python
async def parallel_community_analysis(communities: List[str],
context: DeepResearchContext):
"""Analyze multiple communities in parallel."""
tasks = []
for community in communities:
task = asyncio.create_task(
analyze_community(community, context)
)
tasks.append(task)
results = await asyncio.gather(*tasks)
return results
```
## Migration Path
### Phase 1: Parallel Systems (Weeks 1-2)
- Build deep research system alongside existing
- Share base components (Reddit client, models)
- Test with subset of queries
### Phase 2: Progressive Enhancement (Weeks 3-4)
- Add deep research as optional mode
- Default to quick discovery for simple queries
- Activate deep research for complex questions
### Phase 3: Integration (Weeks 5-6)
- Unified entry point with intelligent routing
- Automatic depth selection based on query
- Seamless fallback between modes
### Phase 4: Optimization (Weeks 7-8)
- Performance tuning
- Cache optimization
- Cost analysis and budgeting
## Example Research Scenarios
### Scenario 1: "Best Python communities for data science beginners"
**Research Plan**:
1. **Discovery Phase**: Find all Python and data science communities
2. **Analysis Phase**:
- Evaluate beginner-friendliness
- Assess learning resource quality
- Analyze mentor availability
3. **Synthesis Phase**:
- Rank communities by criteria
- Create learning path recommendations
- Compile resource library
**Expected Output**:
- Top 5 communities with detailed justifications
- Learning progression path
- Curated resource collection
- Weekly activity schedule recommendations
- Key people to follow
### Scenario 2: "Emerging AI safety discussions on Reddit"
**Research Plan**:
1. **Discovery Phase**: Map AI safety ecosystem
2. **Trend Analysis Phase**:
- Track topic evolution
- Identify emerging concerns
- Find thought leaders
3. **Synthesis Phase**:
- Summarize key debates
- Highlight consensus/disagreements
- Predict future discussions
**Expected Output**:
- Current state of AI safety discourse
- Emerging topics and concerns
- Key voices and their positions
- Community sentiment analysis
- Recommended reading order
## Future Enhancements
### Near-term (3-6 months)
1. **Visual Analysis**: Process images and infographics
2. **Sentiment Analysis**: Deeper emotional understanding
3. **User Profiling**: Analyze influential users
4. **Cross-Platform**: Extend beyond Reddit
### Medium-term (6-12 months)
1. **Predictive Analytics**: Forecast community trends
2. **Personalization**: Learn user preferences
3. **Real-time Monitoring**: Continuous research updates
4. **Integration APIs**: Connect with other tools
### Long-term (12+ months)
1. **Autonomous Research**: Self-directed exploration
2. **Knowledge Graph**: Build comprehensive topic maps
3. **Research Collaboration**: Multi-agent research teams
4. **Scientific Method**: Hypothesis testing and validation
## Conclusion
This deep research architecture transforms Reddit discovery from a simple search tool into a comprehensive research system. By embracing longer execution times and multi-phase investigation, we can deliver insights that match or exceed human research quality while maintaining the speed advantage of automation.
The key innovation is treating Reddit discovery as a research problem rather than a search problem. This shift enables:
- Thorough understanding over quick results
- Evidence-based recommendations over assumptions
- Adaptive strategies over fixed pipelines
- Comprehensive insights over surface metrics
This architecture positions the Reddit discovery tool as a true research assistant capable of conducting hours of human-equivalent research in minutes, with full documentation and citations for every finding.