Skip to main content
Glama

ThoughtMCP Cognitive Architecture v0.5.0

CI TypeScript Node.js PostgreSQL License

Production-Ready AI Cognitive Architecture with Human-Like Memory and Reasoning

ThoughtMCP v0.5.0 is a complete rebuild featuring Hierarchical Memory Decomposition (HMD), persistent PostgreSQL storage, parallel reasoning streams, dynamic framework selection, and metacognitive monitoring. Built for production with 95%+ test coverage and sub-200ms retrieval performance.

βœ… Status: Production Ready - Complete PostgreSQL-based architecture with advanced cognitive capabilities

What's New in v0.5.0?

ThoughtMCP v0.5.0 is a complete architectural rebuild with production-grade capabilities:

🧠 Hierarchical Memory Decomposition (HMD)

  • Five-Sector Embeddings: Episodic, Semantic, Procedural, Emotional, and Reflective memory types

  • Waypoint Graph System: Sparse graph with 1-3 connections per memory for efficient traversal

  • Composite Scoring: 0.6Γ—similarity + 0.2Γ—salience + 0.1Γ—recency + 0.1Γ—link_weight

  • Temporal Decay: Exponential forgetting with automatic reinforcement on access

  • PostgreSQL Persistence: Production-grade storage with pgvector for vector operations

⚑ Performance Targets

  • Sub-200ms Retrieval: p50 <100ms, p95 <200ms, p99 <500ms at 100k memories

  • Fast Embedding: <500ms for all five sectors

  • Parallel Reasoning: <30s total, <10s per stream

  • Efficient Operations: <100ms confidence assessment, <15% bias detection overhead

πŸ”€ Parallel Reasoning Streams

  • Four Concurrent Streams: Analytical, Creative, Critical, and Synthetic reasoning

  • Real-Time Coordination: Synchronization at 25%, 50%, 75% completion

  • Conflict Preservation: Maintains diverse perspectives in synthesis

  • Low Overhead: <10% coordination cost

🎯 Dynamic Framework Selection

  • Eight Frameworks: Scientific Method, Design Thinking, Systems Thinking, Critical Thinking, Creative Problem Solving, Root Cause Analysis, First Principles, Scenario Planning

  • Auto-Selection: >80% accuracy in choosing optimal framework

  • Hybrid Support: Combines 2-3 frameworks for complex problems

  • Adaptive Learning: Improves selection over time

πŸ”¬ Metacognitive Monitoring

  • Confidence Calibration: Β±10% accuracy between predicted and actual performance

  • Bias Detection: >70% detection rate for 8 bias types (confirmation, anchoring, availability, etc.)

  • Emotion Detection: >75% accuracy using Circumplex model (valence, arousal, dominance)

  • Self-Improvement: 5-10% monthly performance improvement

πŸ—οΈ Production Hardening

  • 95%+ Test Coverage: Comprehensive unit, integration, e2e, performance, and accuracy tests

  • 99.9% Uptime: MTTD <5 minutes, MTTR <1 hour

  • Local Embeddings: Uses local models (Ollama, E5, BGE) for zero API costs

  • Horizontal Scaling: Supports up to 1M memories per user

Quick Start

Prerequisites

  • Node.js 18.0+ (LTS recommended)

  • PostgreSQL 14.0+ with pgvector extension

  • Docker (optional, for local PostgreSQL)

Installation

# Clone the repository git clone https://github.com/keyurgolani/ThoughtMcp.git cd ThoughtMcp # Install dependencies npm install # Setup environment cp .env.example .env.development # Edit .env.development with your PostgreSQL credentials # Start PostgreSQL with Docker (optional) docker-compose up -d # Initialize database npm run db:setup # Build the project (runs all quality gates automatically) npm run build # This runs: clean β†’ format β†’ audit β†’ lint β†’ typecheck β†’ test β†’ build # Or run quick build (skip validation if already validated) npm run build:quick # Start the MCP server npm start

Development Setup

# Start development server with hot reload npm run dev # Run tests in watch mode npm run test:watch # Full validation (audit, format:check, lint, typecheck, test) npm run validate # Build with all quality gates (recommended before commits) npm run build

Build Process - Quality Gates

The build process automatically enforces all quality standards:

npm run build

Automatic Quality Pipeline:

  1. βœ… Clean build artifacts

  2. βœ… Auto-format code with Prettier

  3. βœ… Security audit (moderate+ vulnerabilities)

  4. βœ… Format verification

  5. βœ… Lint code quality

  6. βœ… Type check TypeScript

  7. βœ… Run complete test suite

  8. βœ… Generate TypeScript declarations

  9. βœ… Create production bundle

Build fails if ANY step fails. Zero tolerance for security vulnerabilities, formatting issues, linting errors, type errors, or test failures.

Docker Deployment

ThoughtMCP uses a unified Docker Compose approach with separate files for development, testing, and production. Docker Compose files are the single source of truth for all container configuration.

Docker Compose Files

File

Purpose

When to Use

docker-compose.dev.yml

Development environment

Local development with

npm run dev

docker-compose.test.yml

Test containers

Automated tests or manual test runs

docker-compose.prod.yml

Production deployment

Deploying the full MCP server stack

Environment Configuration

All configuration comes from .env files. Copy the template and configure:

# Copy environment template cp .env.example .env # Edit with your settings nano .env

Key variables in .env:

# Development Database DB_HOST=localhost DB_PORT=5432 DB_NAME=thoughtmcp_dev DB_USER=thoughtmcp_dev DB_PASSWORD=dev_password # Ollama OLLAMA_HOST=http://localhost:11434 EMBEDDING_MODEL=nomic-embed-text # Test Configuration (separate ports to avoid conflicts) TEST_DB_PORT=5433 TEST_OLLAMA_PORT=11435 # Container Management AUTO_START_CONTAINERS=true # Auto-start containers for tests KEEP_CONTAINERS_RUNNING=false # Keep containers after tests

Quick Start: Development

# 1. Configure environment cp .env.example .env # 2. Start development containers docker compose -f docker-compose.dev.yml up -d # 3. Wait for health checks docker compose -f docker-compose.dev.yml ps # 4. Pull embedding model (first time only) docker exec thoughtmcp-ollama-dev ollama pull nomic-embed-text # 5. Run the MCP server npm run dev

Quick Start: Testing (Auto Containers)

Tests automatically start and stop containers via the TestContainerManager:

# Automatic container management (recommended) npm test # Or with explicit setting AUTO_START_CONTAINERS=true npm test

For manual container management:

# Start test containers manually docker compose -f docker-compose.test.yml up -d --wait # Run tests without auto-start AUTO_START_CONTAINERS=false npm test # Stop test containers docker compose -f docker-compose.test.yml down

Quick Start: Production

# 1. Configure production environment cp .env.production.example .env.production nano .env.production # Set secure passwords # 2. Build the MCP server npm run build # 3. Start production stack docker compose -f docker-compose.prod.yml up -d # 4. View logs docker compose -f docker-compose.prod.yml logs -f

πŸ‘‰ Complete Docker Deployment Guide

MCP Server Configuration

Configure ThoughtMCP as an MCP server in .kiro/settings/mcp.json. There are two connection methods:

Option 1: Docker Exec (Recommended for Production)

Connect directly to the running Docker container. The container runs in standby mode, waiting for MCP client connections.

# Start the production stack first docker compose -f docker-compose.prod.yml up -d
{ "mcpServers": { "thoughtmcp": { "command": "docker", "args": ["exec", "-i", "thoughtmcp-server", "node", "dist/index.js"], "env": {}, "disabled": false, "autoApprove": [] } } }

Option 2: Local Node Process (Development)

Run the MCP server locally while connecting to Docker services.

# Start dev containers and build docker compose -f docker-compose.dev.yml up -d npm run build
{ "mcpServers": { "thoughtmcp": { "command": "node", "args": ["/absolute/path/to/ThoughtMcp/dist/index.js"], "env": { "DATABASE_URL": "postgresql://user:pass@localhost:5432/thoughtmcp_dev", "EMBEDDING_MODEL": "nomic-embed-text", "EMBEDDING_DIMENSION": "768", "OLLAMA_HOST": "http://localhost:11434", "LOG_LEVEL": "INFO", "NODE_ENV": "development" }, "disabled": false, "autoApprove": [] } } }

Environment Variables (for local node process):

  • DATABASE_URL - PostgreSQL connection string

  • EMBEDDING_MODEL - Embedding model (nomic-embed-text, mxbai-embed-large)

  • EMBEDDING_DIMENSION - Model-specific dimension (768 for nomic-embed-text)

  • OLLAMA_HOST - Ollama server URL

  • LOG_LEVEL - Logging level (DEBUG, INFO, WARN, ERROR)

  • NODE_ENV - Environment (development, production, test)

πŸ‘‰ Complete Configuration Guide

Architecture Overview

Core Components

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ MCP Interface Layer β”‚ β”‚ Comprehensive tools with schemas and validation β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Cognitive Orchestrator β”‚ β”‚ Coordinates all cognitive components and workflow β”‚ β””β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β–Όβ”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Reasoning β”‚ β”‚ Memory β”‚ β”‚ Bias β”‚ β”‚ Metacognition β”‚ β”‚ Engine β”‚ β”‚ System β”‚ β”‚Detectorβ”‚ β”‚ Monitor β”‚ β””β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”¬β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ HMD Memory Layer β”‚ β”‚ β”‚ β”‚ β€’ Five-Sector Embeddings β”‚ β”‚ β”‚ β”‚ β€’ Temporal Decay System β”‚ β”‚ └──────► β€’ Waypoint Graph β—„β”€β”€β”€β”˜ β”‚ β€’ Search & Retrieval β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ PostgreSQL Persistence β”‚ β”‚ β€’ pgvector extension β”‚ β”‚ β€’ Connection pooling β”‚ β”‚ β€’ Transaction management β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Key Features

  • HMD Memory System: Five-sector embeddings with waypoint graph

  • Parallel Reasoning: Four concurrent streams (Analytical, Creative, Critical, Synthetic)

  • Framework Selection: Eight systematic thinking frameworks

  • Metacognition: Confidence calibration, bias detection, emotion analysis

  • Production Ready: 95%+ test coverage, sub-200ms retrieval, 99.9% uptime

MCP Tools Overview

ThoughtMCP exposes cognitive capabilities through MCP tools:

Category

Tools

Description

Memory

remember

,

recall

,

update_memory

,

forget

,

search

Persistent memory with five-sector embeddings

Reasoning

think

,

analyze

,

ponder

,

breakdown

Multi-stream reasoning with framework selection

Metacognitive

assess_confidence

,

detect_bias

,

detect_emotion

,

evaluate

Self-monitoring and quality assessment

πŸ‘‰ Complete MCP Tools Reference

Documentation

πŸ“š Essential Guides

Guide

Description

User Guide

Getting started and basic usage

API Reference

Complete API documentation

MCP Tools

MCP tool schemas and examples

Architecture

System design and components

πŸ”§ Configuration & Operations

Guide

Description

Environment

Environment variables reference

Database

PostgreSQL setup and schema

Docker Deployment

Docker Compose deployment guide

Deployment

Production deployment guide

Monitoring

Observability and alerting

πŸ’» Development

Guide

Description

Development

Development workflow and setup

Testing

Testing strategies and TDD

Contributing

Contribution guidelines

Build

Build system and optimization

πŸš€ Quick Links

Why ThoughtMCP v0.5.0?

Production-Grade Architecture

  • PostgreSQL Persistence: Cross-session memory with pgvector for vector operations

  • Sub-200ms Retrieval: p50 <100ms, p95 <200ms, p99 <500ms at 100k memories

  • 95%+ Test Coverage: Comprehensive unit, integration, e2e, performance, and accuracy tests

  • 99.9% Uptime: MTTD <5 minutes, MTTR <1 hour with graceful degradation

  • Local Embeddings: Uses local models (Ollama, E5, BGE) for zero API costs

Advanced Cognitive Capabilities

  • HMD Memory System: Five-sector embeddings (Episodic, Semantic, Procedural, Emotional, Reflective)

  • Parallel Reasoning: Four concurrent streams with real-time coordination

  • Framework Selection: Eight systematic thinking frameworks with >80% selection accuracy

  • Metacognition: Confidence calibration (Β±10%), bias detection (>70%), emotion analysis (>75%)

  • Self-Improvement: 5-10% monthly performance improvement through learning

Developer Experience

  • Test-Driven Development: Strict TDD with comprehensive test utilities

  • Clear Documentation: Development, testing, database, and configuration guides

  • Modern Stack: TypeScript 5.0+, Vitest, PostgreSQL 14+, pgvector

  • Quality Standards: Zero TypeScript errors, zero ESLint warnings, formatted with Prettier

  • Open Source: MIT license, active development, extensible architecture

Contributing

We welcome contributions! ThoughtMCP v0.5.0 is a complete rebuild following strict quality standards.

Development Workflow

  1. Fork and Clone: Fork the repository and clone locally

  2. Setup Environment: Follow Development Guide

  3. Create Branch: git checkout -b feature/your-feature

  4. Follow TDD: Write tests first, then implementation

  5. Run Validation: npm run validate (format, lint, typecheck, test)

  6. Submit PR: Create pull request with clear description

Quality Standards

  • Test-Driven Development: Write failing tests first

  • 95%+ Coverage: Line coverage 95%+, branch coverage 90%+

  • Zero Warnings: No TypeScript errors, no ESLint warnings

  • All Tests Pass: No exceptions, no skipped tests without plan

  • Clear Commits: Follow conventional commits format

Key Resources

Community and Support

  • πŸ“– Documentation: docs/ - Comprehensive guides

  • πŸ’¬ GitHub Discussions: Ask questions and share ideas

  • πŸ› Issues: Report bugs and request features

  • 🀝 Contributing: See Contributing section

  • πŸ“§ Contact: @keyurgolani

Project Status

  • βœ… Production Ready: Complete PostgreSQL-based cognitive architecture

  • βœ… All Phases Complete: HMD memory, reasoning, metacognition, production hardening

  • βœ… Fully Tested: 3457 tests, 96%+ statement coverage, 91%+ branch coverage

  • βœ… All Accuracy Targets Met: Confidence Β±10%, Bias >70%, Emotion >75%, Framework >80%

  • βœ… Documentation Complete: User guides, API docs, deployment guides, examples

License

MIT License - see LICENSE for details


Building Production-Ready AI Cognitive Architecture

πŸ‘‰ [Get Started](# quick-start) | πŸ“š Documentation | 🀝 Contribute | πŸ’¬ Discussions

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/keyurgolani/ThoughtMcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server