# 📄 PDF Parsing Challenge & Solution
## 🔍 The Problem
The PDFs downloaded from Brønnøysund are **image-based (scanned documents)** without extractable text:
- 32 pages but only 64 characters of metadata
- No searchable text layer
- Standard PDF parsers return empty/N/A values
## 💡 The Solution: Hybrid Approach
### 1. **Automatic PDF Downloads ✅ (Working)**
- Browser automation successfully downloads ALL PDFs
- Files saved to `~/Downloads/` or `data/pdfs/`
- Named format: `aarsregnskap_{org_nr}-{year}.pdf`
### 2. **Data Extraction Strategy**
#### Option A: API + Manual Entry (Recommended)
```javascript
// Automatic for latest year
✅ 2024: API returns complete data (revenue, profit, assets, equity)
// Historical years: Manual entry after viewing PDFs
📄 2023: PDF downloaded → User views → Enters data
📄 2022: PDF downloaded → User views → Enters data
```
#### Option B: OCR Integration (Future Enhancement)
```javascript
// Install OCR tool (e.g., Tesseract)
brew install tesseract
// Convert image PDF to text
tesseract aarsregnskap_999059198-2023.pdf output.txt
// Parse extracted text
```
#### Option C: Use Browser Extraction
Instead of downloading PDFs, scrape the data directly from the webpage tables if available.
---
## 🛠️ Current Working Implementation
### What Works Now:
1. **Browser automation** - Opens Chrome, navigates to company page ✅
2. **Finds all years** - Discovers 2012-2024 for test company ✅
3. **Downloads PDFs** - Clicks download links, saves files ✅
4. **API data extraction** - Gets latest year (2024) with full data ✅
5. **Database storage** - Saves all data for instant access ✅
### What Needs Manual Work:
- **Historical PDF data extraction** - PDFs are scanned images
- User must view PDFs and manually enter data OR use OCR tools
---
## 📊 Practical Workflow
### For Each Company:
```bash
# 1. Run auto-scraper (30 seconds)
"auto_scrape_financials for 999059198"
Result:
✅ Downloads all PDFs (2012-2024)
✅ Extracts 2024 data from API
⚠️ Historical years need manual entry
# 2. View downloaded PDFs
open ~/Downloads/aarsregnskap_999059198-2023.pdf
# 3. Manual data entry
"import_financials_from_file data.csv"
```
---
## 🔧 Enhanced Solution with OCR
### Install OCR Dependencies:
```bash
# macOS
brew install tesseract
brew install poppler # for pdf2image
# Install Python OCR libraries
pip install pytesseract pdf2image
```
### OCR Script Example:
```python
import pytesseract
from pdf2image import convert_from_path
# Convert PDF to images
pages = convert_from_path('aarsregnskap_999059198-2023.pdf')
# Extract text from each page
for i, page in enumerate(pages):
text = pytesseract.image_to_string(page, lang='nor')
# Look for financial data patterns
if 'Driftsinntekter' in text:
# Extract revenue
pass
if 'Årsresultat' in text:
# Extract profit
pass
```
---
## 📈 Alternative: Direct Web Scraping
Instead of downloading PDFs, scrape data directly from the webpage:
```javascript
// In browser_scraper.ts
const financialTable = await page.evaluate(() => {
// Find table with financial data
const rows = document.querySelectorAll('tr');
const data = {};
rows.forEach(row => {
const cells = row.querySelectorAll('td');
if (cells[0]?.textContent?.includes('Driftsinntekter')) {
data.revenue = cells[1]?.textContent;
}
// ... extract more fields
});
return data;
});
```
---
## 🎯 Summary
### Current Status:
- ✅ **PDF downloads work perfectly**
- ✅ **Latest year data from API**
- ⚠️ **Historical PDFs are image-based**
### Best Practice Now:
1. Use `auto_scrape_financials` to download all PDFs
2. API provides latest year automatically
3. View historical PDFs manually and use `import_financials` tool
### Future Improvements:
1. Integrate OCR for automatic text extraction
2. Scrape data directly from webpage tables
3. Use AI vision models to read PDF images
---
## 📝 Manual Data Entry Template
After viewing the downloaded PDFs, use this CSV template:
```csv
org_nr,year,revenue,profit,assets,equity,source
999059198,2023,750000000,80000000,400000000,250000000,manual
999059198,2022,700000000,75000000,380000000,240000000,manual
```
Then import:
```
"import_financials_from_file /path/to/data.csv"
```
This hybrid approach ensures you get ALL the data - automatically where possible, manually where necessary!