performance-summary.md•3.9 kB
# Scout MCP Performance Analysis - Executive Summary
**Date:** 2025-11-28
**Status:** ⚠️ NOT PRODUCTION READY (P0 fixes required)
**Grade:** B+ (Good with critical issues)
---
## Quick Stats
| Metric | Current | Target | Status |
|--------|---------|--------|--------|
| Cold start | 10.47ms | <20ms | ✅ GOOD |
| Warm lookup | 0.02ms | <1ms | ✅ EXCELLENT |
| Single-host throughput | 2,186 req/s | >1,000 | ✅ GOOD |
| Multi-host throughput | 149 req/s | >1,000 | ❌ CRITICAL |
| Memory (100 conns) | 0.07 MB | <10 MB | ✅ EXCELLENT |
| Lock contention | High | Low | ❌ CRITICAL |
| Pool size limit | None | 100-500 | ❌ CRITICAL |
---
## Critical Issues (P0 - Must Fix)
### 🔴 Issue #1: Global Lock Serialization
- **File:** `pool.py:44`
- **Impact:** 10x slowdown on parallel connections (104ms vs 10ms)
- **Fix:** Per-host locks instead of global lock
- **Effort:** 2-4 hours
### 🔴 Issue #2: No Connection Pool Limits
- **File:** `pool.py:35`
- **Impact:** Memory exhaustion under load
- **Fix:** Add `max_connections` parameter with semaphore
- **Effort:** 1-2 hours
### 🔴 Issue #3: No Request Concurrency Limits
- **File:** `server.py:36`
- **Impact:** DoS vulnerability
- **Fix:** Global request semaphore
- **Effort:** 30 minutes
---
## Performance by Component
### Connection Pool
- ✅ Cold start: 10.47ms (excellent)
- ✅ Warm lookup: 0.02ms (excellent)
- ❌ Multi-host parallelism: 10x slower than expected
- ✅ Memory: 80 bytes/connection (excellent)
- ✅ Cleanup overhead: <0.01ms (negligible)
### SSH Operations
- ✅ stat_path: 1.10ms (13% overhead)
- ✅ cat_file: 1.13ms (13% overhead)
- ✅ ls_dir: 1.13ms (13% overhead)
- ✅ Large files (1MB): 93 MB/s (7% overhead)
### Configuration
- ✅ Parse 100 hosts: 1.67ms (60k hosts/s)
- ✅ Parse 1000 hosts: 10.16ms (98k hosts/s)
- ✅ Cached lookup: 0.011ms (excellent)
### URI Parsing
- ✅ Average: 0.0011ms (<0.01% of request)
- ✅ Long paths: 0.0007ms (no degradation)
---
## Scalability Limits
### Current (Broken)
```
1 host: 10ms ✅
10 hosts: 100ms ❌ (should be 15ms)
100 hosts: 1000ms ❌ (should be 20ms)
```
### After Fixes
```
1 host: 10ms ✅
10 hosts: 15ms ✅ (6.6x improvement)
100 hosts: 20ms ✅ (50x improvement)
```
---
## Benchmark Commands
```bash
# Run all benchmarks
python -m pytest benchmarks/ -v -s
# Connection pool benchmarks
python -m pytest benchmarks/test_connection_pool.py -v -s
# End-to-end benchmarks
python -m pytest benchmarks/test_end_to_end.py -v -s
# CPU profiling
python benchmarks/profile_cpu.py
# Memory profiling
python benchmarks/profile_memory.py
```
---
## Fix Checklist
### Phase 1 (P0 - Production Blockers)
- [ ] Replace global lock with per-host locks (`pool.py:39,44`)
- [ ] Add connection pool size limit (`pool.py:35`)
- [ ] Add request concurrency limit (`server.py:36`)
- [ ] Add SSH connection timeout (`pool.py:53`)
### Phase 2 (P1 - Important)
- [ ] Add pool metrics (size, hit rate, miss rate)
- [ ] Add per-host connection limits
- [ ] Add connection warming for frequent hosts
### Phase 3 (P2 - Nice to Have)
- [ ] Adaptive timeouts based on latency
- [ ] Connection health checks
- [ ] Request prioritization
---
## Production Readiness
**Current Status:** ❌ NOT READY
**Blockers:**
1. Global lock prevents horizontal scaling
2. No resource limits (memory/connection exhaustion)
3. No timeout protection (hung connections)
**After P0 Fixes:** ✅ READY for moderate load (<1000 req/s)
**Total effort to production:** 4-7 hours
---
## Key Metrics to Monitor
1. **Pool hit rate** - Should be >90% for warm workloads
2. **Connection count** - Should stay within limits
3. **P95 latency** - Should be <50ms for warm requests
4. **Lock wait time** - Should be <1ms (after fix)
5. **Memory usage** - Should be linear with connections
---
For detailed analysis, see `.docs/performance-analysis.md`