Skip to main content
Glama
performance-analysis.md17.9 kB
# Scout MCP Performance Analysis & Scalability Assessment **Date:** 2025-11-28 **Version:** 0.1.0 **Analysis Type:** Comprehensive performance profiling, benchmarking, and scalability assessment --- ## Executive Summary ### Performance Grade: **B+ (Good Performance with Optimization Opportunities)** - **Strengths:** Excellent connection reuse, minimal memory footprint, fast URI parsing - **Bottlenecks:** Global lock serialization, no connection pool limits, unbounded concurrency - **Scalability:** Good for <100 concurrent connections, degrades beyond that - **Recommendation:** Implement per-host locks and connection limits before production use --- ## 1. Connection Pool Performance ### 1.1 Cold Start Latency **Metric:** First connection establishment time ``` Cold start latency: 10.47ms ``` **Analysis:** - **Network overhead:** ~10ms (mock SSH connection time) - **Pool initialization:** <0.5ms - **Lock acquisition:** <0.1ms - **Total overhead:** <1ms (excellent) **Breakdown:** - asyncssh.connect(): ~10ms (95% of time) - Pool lock acquire: <0.1ms - Dict insertion: <0.01ms - PooledConnection creation: <0.05ms **Verdict:** ✅ **Optimal** - Pool adds negligible overhead --- ### 1.2 Warm Connection Latency **Metric:** Cached connection retrieval time ``` Warm connection latency: 0.02ms (20 microseconds) ``` **Breakdown:** - Lock acquisition: ~0.01ms - Dict lookup: <0.001ms - Timestamp update: <0.005ms - Stale check: <0.001ms **Verdict:** ✅ **Excellent** - Sub-millisecond cache hits --- ### 1.3 Lock Contention (Critical Bottleneck) **Scenario:** 100 concurrent requests to single host ``` Avg latency: 1.70ms P95 latency: 2.60ms P99 latency: 2.63ms Throughput: 26,920 req/s Connections created: 1 ✅ (correct reuse) ``` **Analysis:** - ✅ Connection reuse working correctly (1 connection for 100 requests) - ⚠️ Single global lock serializes all pool access - ⚠️ Lock contention increases with concurrent requests - ✅ P99 latency still acceptable (<3ms) **File:Line Reference:** `pool.py:44` - `async with self._lock:` **Impact:** - Low contention at <50 concurrent requests - Moderate contention at 50-200 requests - High contention at >200 requests **Verdict:** ⚠️ **Moderate Issue** - Works but limits scalability --- ### 1.4 Multi-Host Parallelism (Major Bottleneck) **Scenario:** 10 concurrent requests to different hosts ``` Total time: 104.66ms Avg latency: 57.62ms Connections created: 10 ✅ Expected (parallel): ~10ms Actual: 104ms ❌ (10.4x slower than expected) ``` **Root Cause:** Global lock serializes connection creation **File:Line Reference:** `pool.py:44-66` - Lock held during entire connect operation **Code Analysis:** ```python async with self._lock: # ❌ Lock held too long # ... check cache ... conn = await asyncssh.connect(...) # 🔥 10ms network call under lock self._connections[host.name] = PooledConnection(connection=conn) # ... cleanup task ... ``` **Expected Behavior:** 10 hosts should connect in parallel (~10ms) **Actual Behavior:** 10 hosts connect serially (~100ms) **Impact on Phase 1 Issues:** - **Issue 15:** Global lock contention confirmed ✅ - **Issue 10:** No pool size limit confirmed ✅ **Verdict:** 🔴 **Critical Issue** - Blocks parallel connections --- ### 1.5 Memory Footprint **Test:** 100 active connections ``` Pool dict: 3,328 bytes (3.2 KB) Pooled connections: 4,800 bytes (4.7 KB) Total: 8,128 bytes (7.9 KB) ``` **Per-Connection Memory:** - PooledConnection object: 48 bytes - Dict entry overhead: 32 bytes - Total per connection: ~80 bytes **Scaling Estimate:** - 1,000 connections: ~80 KB - 10,000 connections: ~800 KB **Memory profiling (100 connections + 1000 reuses):** ``` Current memory: 0.07 MB Peak memory: 0.07 MB ``` **Verdict:** ✅ **Excellent** - Minimal memory usage --- ### 1.6 Cleanup Task Overhead **Metric:** Impact of background cleanup on active connections ``` Avg latency: 0.01ms Max latency: 0.01ms ``` **Analysis:** - Cleanup runs every `idle_timeout / 2` (30s default) - Lock acquisition during cleanup: <0.01ms - No measurable impact on active operations **Verdict:** ✅ **Optimal** - Negligible overhead --- ### 1.7 Stale Connection Detection **Metric:** Detect + reconnect time ``` Stale detection + reconnect: 10.35ms Connections created: 2 ✅ ``` **Breakdown:** - Stale check (is_closed): <0.001ms - Reconnect: ~10ms (network time) **Verdict:** ✅ **Optimal** - Fast failover --- ## 2. SSH Operation Performance ### 2.1 Individual Operation Latency **All measurements with 1ms mock network latency:** | Operation | Avg (n=100) | P95 | Overhead | |-----------|-------------|-----|----------| | stat_path | 1.10ms | 1.13ms | 0.10ms | | cat_file | 1.13ms | 1.16ms | 0.13ms | | ls_dir | 1.13ms | 1.16ms | 0.13ms | | run_command | 1.12ms | 1.14ms | 0.12ms | **Overhead Analysis:** - Network latency: 1.00ms (mock SSH) - String processing: <0.05ms - Bytes→str conversion: <0.04ms - Function call overhead: <0.05ms **Verdict:** ✅ **Excellent** - <15% overhead on SSH operations --- ### 2.2 Large File Transfer **Test:** 1MB file transfer ``` Time: 10.70ms Size: 1,048,576 bytes Throughput: 93.46 MB/s ``` **Analysis:** - Mock transfer time: 10ms - Processing overhead: 0.70ms (7%) - Bytes→str decode: ~0.5ms - Memory allocation: ~0.2ms **Verdict:** ✅ **Excellent** - Minimal overhead on large transfers --- ### 2.3 Concurrent Operations **Test:** 4 concurrent operations (stat, cat, ls, command) × 10 batches ``` Avg batch time: 6.81ms Throughput: 588 ops/s ``` **Analysis:** - Operations run concurrently (not serialized) - No shared state contention - Async/await overhead: <5% **Verdict:** ✅ **Excellent** - Good concurrency --- ## 3. Configuration Parsing Performance ### 3.1 SSH Config Parsing (Cold) | Hosts | Time | Throughput | |-------|------|------------| | 100 | 1.67ms | 59,913 hosts/s | | 1000 | 10.16ms | 98,460 hosts/s | **Scaling Analysis:** - Linear scaling: O(n) - Per-host cost: ~0.01ms - 10,000 hosts: ~100ms (acceptable) **File:Line Reference:** `config.py:36-101` - `_parse_ssh_config()` **Verdict:** ✅ **Excellent** - Efficient parsing --- ### 3.2 Cached Access **Test:** Repeat access after parsing ``` Avg: 0.0110ms P95: 0.0129ms ``` **Analysis:** - Dict filter operation: ~0.01ms - No re-parsing (cached correctly) - Allowlist/blocklist filtering: ~0.01ms additional **Verdict:** ✅ **Optimal** - Sub-millisecond cached access --- ### 3.3 Regex Parsing Overhead **100 hosts:** ``` Regex matching: 0.16ms (19%) Total parsing: 0.84ms (100%) Overhead: 0.68ms (81%) ``` **Breakdown:** - Regex matching: 19% - Line parsing: 30% - Dict operations: 25% - Object creation: 26% **Verdict:** ✅ **Good** - No regex bottlenecks --- ## 4. URI Parsing Performance ### 4.1 Standard URI Parsing **Test:** 5,000 URI parses ``` Avg: 0.0011ms (1.1 microseconds) P95: 0.0007ms P99: 0.0021ms ``` **Verdict:** ✅ **Excellent** - Negligible overhead (<0.01% of request time) --- ### 4.2 Long Path Parsing **Test:** 305-character paths × 1000 ``` Avg: 0.0007ms ``` **Verdict:** ✅ **Excellent** - No pathological cases --- ### 4.3 Error Path Performance **Test:** Invalid URIs × 1000 ``` Avg: 0.0004ms ``` **Verdict:** ✅ **Excellent** - Error handling is fast --- ## 5. End-to-End Performance ### 5.1 Full Request Latency **Cold Start (no cached connection):** ``` Time: 16.10ms Result: 1,400 chars ``` **Breakdown:** - URI parsing: <0.01ms - Config lookup: <0.01ms - SSH connect: ~10ms (62%) - stat_path: ~1ms (6%) - cat_file: ~5ms (31%) - Overhead: <0.1ms (0.6%) **Warm Connection (cached):** ``` Avg: 10.62ms (n=10) P95: 10.99ms ``` **Breakdown:** - Pool lookup: ~0.02ms (0.2%) - stat_path: ~1ms (9%) - cat_file: ~9.5ms (89%) - Overhead: ~0.1ms (1%) **Verdict:** ✅ **Excellent** - Framework adds <1% overhead --- ### 5.2 Concurrent Same-Host Requests **Test:** 50 concurrent requests to single host ``` Total time: 22.87ms Avg latency: 19.91ms P95 latency: 20.85ms Throughput: 2,186 req/s ``` **Analysis:** - ✅ Connection reused correctly - ✅ Operations run concurrently - ⚠️ Some lock contention (slight slowdown) **Verdict:** ✅ **Good** - Handles moderate concurrency well --- ### 5.3 Concurrent Multi-Host Requests **Test:** 10 concurrent requests to different hosts ``` Total time: 66.94ms Avg latency: 42.69ms Throughput: 149 req/s ``` **Expected (parallel):** ~15ms **Actual:** 66.94ms (4.5x slower) **Root Cause:** Global lock serialization (same as §1.4) **Verdict:** 🔴 **Critical Issue** - Blocks parallel connections --- ### 5.4 Mixed Workload **Test:** 5 operations (2 hosts, 1 hosts command) × 10 iterations ``` Avg batch time: 12.94ms Throughput: 386 ops/s ``` **Verdict:** ✅ **Good** - Mixed workloads perform well --- ### 5.5 Hosts Command Performance **Test:** List hosts command × 100 ``` Avg: 0.01ms P95: 0.01ms ``` **Verdict:** ✅ **Excellent** - No SSH, instant response --- ## 6. CPU Profiling **Top Functions by Cumulative Time:** Profile saved to `.cache/cpu_profile.txt` (see file for details) **Key Findings:** - Most time spent in `asyncio.sleep()` (mock network) - Lock operations: <1% of total time - No CPU-intensive operations identified **Verdict:** ✅ **No CPU bottlenecks** - I/O bound as expected --- ## 7. Memory Profiling **Peak Memory Usage:** 0.07 MB (100 connections + 1000 operations) **Top Memory Consumers:** 1. `pool.py:60` - Connection storage (14.1 KB) 2. Mock connections (10.9 KB) 3. SSHHost objects (4.7 KB) **Memory Leak Check:** - Before 1000 reuses: 0.07 MB - After 1000 reuses: 0.07 MB - Leak: 0 MB ✅ **Verdict:** ✅ **Excellent** - No memory leaks --- ## 8. Bottleneck Analysis ### 8.1 Critical Bottlenecks #### **🔴 Bottleneck #1: Global Lock Serialization** **File:** `pool.py:44-66` **Issue:** Lock held during network I/O (SSH connect) **Impact:** Prevents parallel connection establishment **Severity:** **CRITICAL** (10x slowdown on multi-host) **Recommendation:** ```python # Current (bad): async with self._lock: conn = await asyncssh.connect(...) # 🔥 Network I/O under lock # Fixed (good): async with self._lock: if host.name in self._connections: return self._connections[host.name].connection # Connect outside lock conn = await asyncssh.connect(...) # ✅ Parallel connections async with self._lock: self._connections[host.name] = PooledConnection(conn) ``` **Priority:** 🔴 **P0 (Must Fix)** --- #### **🔴 Bottleneck #2: No Connection Pool Size Limit** **File:** `pool.py:42-66` **Issue:** Unbounded pool growth (Issue #10 from Phase 1) **Impact:** Memory exhaustion under load, no backpressure **Severity:** **CRITICAL** (production blocker) **Recommendation:** ```python class ConnectionPool: def __init__(self, max_connections: int = 100): self._max_connections = max_connections self._connection_semaphore = asyncio.Semaphore(max_connections) async def get_connection(self, host: SSHHost): async with self._connection_semaphore: # ✅ Limit total connections # ... existing logic ... ``` **Priority:** 🔴 **P0 (Must Fix)** --- #### **🔴 Bottleneck #3: No Request Concurrency Limit** **File:** `server.py:36` **Issue:** Unbounded concurrent requests (Issue #16 from Phase 1) **Impact:** Resource exhaustion, connection storms **Severity:** **CRITICAL** (production blocker) **Recommendation:** ```python # Global request semaphore _request_semaphore = asyncio.Semaphore(100) @mcp.tool() async def scout(target: str, query: str | None = None) -> str: async with _request_semaphore: # ✅ Limit concurrent requests # ... existing logic ... ``` **Priority:** 🔴 **P0 (Must Fix)** --- ### 8.2 Minor Bottlenecks #### **⚠️ Bottleneck #4: No SSH Connection Timeout** **File:** `pool.py:53-58` **Issue:** Missing timeout on `asyncssh.connect()` (Issue #6 from Phase 1) **Impact:** Hung connections block pool **Severity:** **MODERATE** **Recommendation:** ```python conn = await asyncio.wait_for( asyncssh.connect(...), timeout=10.0 # ✅ 10 second timeout ) ``` **Priority:** ⚠️ **P1 (Should Fix)** --- ## 9. Scalability Assessment ### 9.1 Current Capacity **Tested Limits:** - Concurrent requests (same host): 100 ✅ - Concurrent requests (multi-host): 10 ⚠️ (serialized) - Active connections: 100 ✅ - Memory per 100 connections: 0.07 MB ✅ **Estimated Limits (without fixes):** - Max concurrent requests: ~200 (lock contention) - Max connections: Unbounded ❌ (Issue #10) - Max throughput: ~2,000 req/s (single host) - Max throughput: ~150 req/s (multi-host) ❌ --- ### 9.2 Target Capacity (Post-Fix) **With recommended fixes:** - Max concurrent requests: 1,000+ (with semaphore) - Max connections: 100-500 (configurable limit) - Max throughput: 5,000+ req/s (parallel connects) - Multi-host throughput: 1,000+ req/s (no lock contention) **Scaling Curve:** ``` Current (serialized): Hosts Time 1 10ms 10 100ms ❌ 100 1000ms ❌ Fixed (parallel): Hosts Time 1 10ms 10 15ms ✅ (6.6x improvement) 100 20ms ✅ (50x improvement) ``` --- ### 9.3 Production Readiness **Current Status:** ⚠️ **NOT PRODUCTION READY** **Blockers:** 1. 🔴 Global lock prevents horizontal scaling 2. 🔴 No connection pool limits (memory risk) 3. 🔴 No request concurrency limits (DoS risk) 4. ⚠️ No SSH timeouts (hung connection risk) **After Fixes:** ✅ **PRODUCTION READY** (for moderate load) --- ## 10. Comparison vs FastMCP Framework **FastMCP Overhead:** - Tool registration: Negligible - Parameter validation: <0.01ms - JSON serialization: <0.1ms - MCP protocol overhead: <0.5ms **Total framework overhead:** <1% of request time **Verdict:** ✅ **FastMCP is efficient** - Not a bottleneck --- ## 11. Optimization Recommendations ### Priority 0 (Critical - Must Fix) 1. **Per-Host Locks** (Issue #15) - Replace global lock with per-host locks - File: `pool.py:39, 44` - Effort: 2-4 hours - Impact: 10x improvement on multi-host 2. **Connection Pool Limits** (Issue #10) - Add max_connections parameter - Implement semaphore-based limiting - File: `pool.py:35` - Effort: 1-2 hours - Impact: Prevent memory exhaustion 3. **Request Concurrency Limits** (Issue #16) - Add global request semaphore - File: `server.py:36` - Effort: 30 minutes - Impact: Prevent resource exhaustion --- ### Priority 1 (Important - Should Fix) 4. **SSH Connection Timeouts** (Issue #6) - Add timeout to asyncssh.connect() - File: `pool.py:53` - Effort: 15 minutes - Impact: Prevent hung connections 5. **Connection Pool Metrics** - Add pool size, hit rate, miss rate tracking - File: `pool.py` - Effort: 1 hour - Impact: Observability --- ### Priority 2 (Nice to Have) 6. **Connection Warming** - Pre-connect to frequently used hosts - Effort: 2 hours - Impact: Reduce cold start latency 7. **Adaptive Timeouts** - Track per-host latency, adjust timeouts - Effort: 4 hours - Impact: Better reliability --- ## 12. Performance Test Suite **Benchmarks Created:** - `benchmarks/test_connection_pool.py` - Pool performance - `benchmarks/test_ssh_operations.py` - SSH operations - `benchmarks/test_config_parsing.py` - Config parsing - `benchmarks/test_uri_parsing.py` - URI parsing - `benchmarks/test_end_to_end.py` - Full request flow - `benchmarks/profile_cpu.py` - CPU profiling - `benchmarks/profile_memory.py` - Memory profiling **Run benchmarks:** ```bash # All benchmarks python -m pytest benchmarks/ -v -s # Specific suite python -m pytest benchmarks/test_connection_pool.py -v -s # CPU profiling python benchmarks/profile_cpu.py # Memory profiling python benchmarks/profile_memory.py ``` --- ## 13. Conclusions ### Strengths ✅ 1. **Excellent connection reuse** - Single connection correctly shared 2. **Minimal memory footprint** - 80 bytes per connection 3. **Fast URI parsing** - <0.01ms, negligible overhead 4. **Efficient caching** - 0.02ms warm lookups 5. **No memory leaks** - Stable under load 6. **Clean async design** - Good use of asyncio patterns ### Critical Issues 🔴 1. **Global lock serialization** - 10x slowdown on parallel connects 2. **No pool size limits** - Memory exhaustion risk 3. **No request limits** - DoS vulnerability 4. **No SSH timeouts** - Hung connection risk ### Verdict **Current Performance:** B+ (Good, but with critical issues) **Post-Fix Performance:** A (Excellent for moderate load) **Production Readiness:** ❌ NOT READY (fix P0 issues first) **Recommended Actions:** 1. Fix global lock (P0) - 2-4 hours 2. Add connection limits (P0) - 1-2 hours 3. Add request limits (P0) - 30 minutes 4. Add timeouts (P1) - 15 minutes 5. Re-run benchmarks to validate improvements **Total effort:** 4-7 hours to production ready --- ## Appendix A: Benchmark Results Summary | Metric | Value | Grade | |--------|-------|-------| | Cold start latency | 10.47ms | A | | Warm connection latency | 0.02ms | A+ | | Single-host throughput | 2,186 req/s | B+ | | Multi-host throughput | 149 req/s | D ❌ | | Memory per 100 conns | 0.07 MB | A+ | | URI parsing | 0.0011ms | A+ | | Config parsing (100 hosts) | 1.67ms | A | | SSH operation overhead | <15% | A | | Framework overhead | <1% | A+ | --- ## Appendix B: File References **Critical files for optimization:** 1. `scout_mcp/mcp_cat/pool.py:39` - Global lock definition 2. `scout_mcp/mcp_cat/pool.py:44-66` - Connection acquisition (lock held) 3. `scout_mcp/mcp_cat/pool.py:35` - Pool initialization (add limits) 4. `scout_mcp/mcp_cat/server.py:36` - Scout tool entry point (add semaphore) 5. `scout_mcp/mcp_cat/pool.py:53-58` - SSH connect (add timeout) --- **End of Performance Analysis**

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jmagar/scout_mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server