Skip to main content
Glama

Risk Assessment

Identify and analyze potential project risks using pattern detection and predictive analytics within the Project Tracker MCP Server. Ensure proactive risk management by evaluating project-specific data.

Instructions

Comprehensive project risk assessment with pattern detection and predictive analytics

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
projectIdYesProject ID to assess (e.g., "project-1", "alpha")

Implementation Reference

  • The complete MCP tool definition for 'Risk Assessment', including the handler function that instantiates RiskAssessmentProcessor and returns structured risk assessment data.
    export const riskAssessmentTool = { name: 'Risk Assessment', description: 'Comprehensive project risk assessment with pattern detection and predictive analytics', parameters: z.object({ projectId: z .string() .min(1, 'Project ID is required') .max(50, 'Project ID too long') .describe('Project ID to assess (e.g., "project-1", "alpha-initiative")'), }), handler: async ({ projectId }: { projectId: string }) => { try { const processor = new RiskAssessmentProcessor(process.env.MCP_DEBUG_MODE === 'true'); const assessment = await processor.assessProjectRisk(projectId); // SAFETY: Ensure assessment is valid if (!assessment) { throw new Error('Risk assessment returned null or undefined'); } return { content: [ { type: 'text', text: JSON.stringify( { project_id: assessment.projectId || projectId, project_name: assessment.projectName || projectId, summary: `${assessment.projectName || projectId}: ${assessment.riskLevel || 'UNKNOWN'} risk (${assessment.riskScore || 0}/100)`, risk_level: assessment.riskLevel || 'MEDIUM', risk_score: assessment.riskScore || 0, progress: assessment.progress || 0, overdue_tasks: assessment.overdueTasks || 0, blocked_tasks: assessment.blockedTasks || 0, risk_breakdown: assessment.riskBreakdown || { schedule: 0, resource: 0, scope: 0, quality: 0, dependencies: 0, }, patterns_detected: (assessment.patterns || []).length, trend: assessment.trend || { direction: 'STABLE', velocity: 0, forecastedRisk: 0, trendFactors: [], }, early_warnings: assessment.earlyWarnings || [], insights: assessment.insights || [], recommendations: assessment.recommendations || [], mitigation_strategies: assessment.mitigationStrategies || [], monitoring_recommendations: assessment.monitoringRecommendations || [], requires_attention: (assessment.riskScore || 0) > 70 || (assessment.earlyWarnings || []).length > 0, }, null, 2, ), }, ], }; } catch (error) { console.error(`[RiskAssessment] Handler failed:`, error); return { content: [ { type: 'text', text: JSON.stringify( { project_id: projectId, project_name: projectId, success: false, error: (error as Error).message, summary: `Failed to assess risk for ${projectId}`, insights: ['Risk assessment unavailable'], recommendations: ['Check system connectivity and project ID validity'], }, null, 2, ), }, ], }; } }, };
  • Zod input schema validation for the Risk Assessment tool requiring a projectId.
    parameters: z.object({ projectId: z .string() .min(1, 'Project ID is required') .max(50, 'Project ID too long') .describe('Project ID to assess (e.g., "project-1", "alpha-initiative")'),
  • Registration of the Risk Assessment tool in the mcpTools array exported for use by the MCP server.
    // Import individual tools import { naturalLanguageQueryTool } from './natural_language_query'; import { workloadAnalysisTool } from './workload_analysis'; import { riskAssessmentTool } from './risk_assessment'; // EXPANSION: Consolidated tool registry for MCP server export const mcpTools = [naturalLanguageQueryTool, workloadAnalysisTool, riskAssessmentTool];
  • Input schema returned by server for ListTools request for 'Risk Assessment' tool.
    case 'Risk Assessment': return { type: 'object', properties: { projectId: { type: 'string', description: 'Project ID to assess (e.g., "project-1", "alpha")', minLength: 1, maxLength: 50, }, }, required: ['projectId'], };
  • src/mcp/server.ts:9-9 (registration)
    Import of mcpTools from tools/index.ts used by MCP server for tool listing and execution.
    import { mcpTools } from './tools';
  • RiskAssessmentProcessor class providing the core risk assessment logic, caching, pattern detection, and analysis used by the tool handler.
    export class RiskAssessmentProcessor { private apiClient: ApiClient; private debugMode: boolean; // CACHE: Risk assessment cache TTL - 15 minutes for timely updates private readonly RISK_CACHE_TTL = 900; constructor(debugMode: boolean = false) { this.debugMode = debugMode; this.apiClient = new ApiClient(); } /** * Perform comprehensive risk assessment with pattern detection * EXPANSION: ML-based risk modeling, real-time pattern recognition * PERFORMANCE: Intelligent caching with automated refresh triggers */ async assessProjectRisk(projectId: string): Promise<EnhancedRiskAssessment> { const startTime = Date.now(); try { this.debug(`Assessing risk for project: ${projectId}`); // CACHE: Check for recent assessment const cacheKey = `risk:assessment:${projectId}`; let cachedAssessment = await CacheService.get<EnhancedRiskAssessment>(cacheKey); if (cachedAssessment) { this.debug(`Retrieved cached risk assessment for ${projectId}`); return cachedAssessment; } // Stage 1: Get base risk assessment const baseAssessment = await this.apiClient.getRiskAssessment(projectId); // Stage 2: Enhance with pattern detection const enhancedAssessment = await this.enhanceRiskAssessment(baseAssessment); // Stage 3: Add trend analysis enhancedAssessment.trend = await this.analyzeTrend(enhancedAssessment); // Stage 4: Detect risk patterns enhancedAssessment.patterns = await this.detectRiskPatterns(enhancedAssessment); // Stage 5: Generate early warnings enhancedAssessment.earlyWarnings = this.generateEarlyWarnings(enhancedAssessment); // Stage 6: Add comparative analysis enhancedAssessment.comparison = await this.generateProjectComparison(enhancedAssessment); // CACHE: Store enhanced assessment await CacheService.set(cacheKey, enhancedAssessment, this.RISK_CACHE_TTL); const processingTime = Date.now() - startTime; this.debug(`Risk assessment completed for ${projectId} in ${processingTime}ms`); return enhancedAssessment; } catch (error) { this.debug(`Risk assessment failed for ${projectId}: ${error}`); throw error; } }

Other Tools

Related Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jatinderbhola/mcp-taskflow-tracker-api'

If you have feedback or need assistance with the MCP directory API, please join our Discord server